
Machine Learning for Network Intrusion Detection
Final Report for CS 229, Fall 2014

Martina Troesch (mtroesch@stanford.edu) and Ian Walsh (iwalsh@stanford.edu)

Abstract

Cyber security is an important and growing area of data mining and machine learning applications. We address
the problem of distinguishing benign network traffic from malicious network-based attacks. Given a labeled dataset
of some 5M network connection traces, we have implemented both supervised (Decision Trees, Random Forests)
and unsupervised (Local Outlier Factor) learning algorithms to solve the binary classification problem of whether a
given connection is normal or abnormal (malicious). Our results for LOF are mixed and hard to interpret, but with
Decision Trees we are able to achieve prediction accuracies of over 90% for both normal and abnormal connections.
Posterior analysis of the best-performing trees gives us new insight into the relative importance of different features
for attack classification and suggests future avenues to explore.

1 Background

As networked systems become more and more pervasive
and businesses continue to move more and more of their
sensitive data online, the number and sophistication of
cyber attacks and network security breaches has risen
dramatically [5]. As FBI Director James Comey stated
earlier this year, “There are two kinds of big compa-
nies in the United States. There are those who’ve been
hacked... and those who don’t yet know they’ve been
hacked.” [6] In order to secure their infrastructure and
protect sensitive assets, organizations are increasingly
relying on network intrusion detection systems (NIDS)
to automatically monitor their network traffic and re-
port suspicious or anomalous behavior.

Historically, most NIDS operate in one of two styles:
misuse detection and anomaly detection. Misuse detec-
tion searches for precise signatures of known malicious
behavior, while anomaly detection tries to build a model
for what constitutes “normal” network traffic patterns
and then flag deviations from those patterns. For all the
same reasons that signature-based antivirus software is
becoming obsolete (the ease of spoofing signatures and
the increasing diversity and sophistication of new at-
tacks), misuse-detection is struggling to remain relevant
in today’s threat landscape. Anomaly-based intrusion
detection offers the enticing prospect of being able to
detect novel attacks even before they’ve been studied
and characterized by security analysts, as well as being
able to detect variations on existing attack methods. In
our project we focus on classifying anomalies using both
supervised and unsupervised learning techniques.

2 Data and Features

Our dataset comes from The Third International
Knowledge Discovery and Data Mining Tools Competi-
tion (KDD Cup ’99) [4]. The goal of the competition
was to build a model capable of classifying network con-
nections as either normal or anomalous, exactly the task
we want to accomplish. The KDD Cup ’99 data is itself
a subset of an original Intrusion Detection Evaluation

dataset compiled by MIT’s Lincoln Laboratory at the
behest of DARPA in 1998 [11]. The data consists of
simulated network connection traces representing a va-
riety of network-based attacks against a background of
normal network activity over a seven-week period at
a medium-sized Air Force base, and there is a smaller
two-week section of test data with identical features.
For the KDD Cup ’99 subset, there are about 5M total
network connections’ worth of training data, and a test
set of about 319K connections.

The data consist of network connections captured
by a UNIX tcpdump-like utility and analyzed by a tool
similar to tcptrace [8]. Each connection is described
by 41 features and is labeled as either “normal” net-
work traffic or with specific type of network-based at-
tack. Some of the features include duration, protocol
type, the number of source bytes, and the number of
destination bytes. The full list of features can be found
at [4]. The types of attacks present in the dataset can
also be found at [4] and include malicious activities such
as buffer overflow and smurf attacks. Rather than try
to predict the exact type of attack, which may be very
difficult if not impossible to do accurately from a sin-
gle connection, we focus on the somewhat easier binary
classification problem of simply labeling connections as
“normal” or “abnormal”.

Obtaining public datasets for network intrusion de-
tection is very difficult, for both privacy reasons and
the costly, error-prone task of hand-labeling connections
(and given FBI Director Comey’s warning, the accuracy
of such labels must be suspect!). As one of the few avail-
able public datasets in this area, the KDD Cup ’99 data
has been widely studied and cited by the intrusion de-
tection community [12]. While there has been criticism
raised against the dataset, and it is no longer an accu-
rate representation of network activity in most environ-
ments, it still serves a valuable role as a benchmark for
training and comparison of new detection algorithms, as
well as a minimal “sanity check” that any new scheme
must pass to be considered credible. [1]

1

3 Approaches

We have implemented three different machine learn-
ing algorithms to classify the KDD Cup ’99 data, with
the goal of optimizing their performance and compar-
ing their strengths and weaknesses. Local outlier fac-
tors (LOF) is an unsupervised learning method that
assigns every data point a numeric score representing
its likelihood of being an outlier, based on its local den-
sity of nearby points relative to its neighbors. Deci-
sion trees are a supervised approach that models the
decision boundary as leaves of a binary tree, with the
interior nodes representing different features of the in-
put connections ordered by their relative importance for
classification. Random forests are a variation of decision
trees wherein instead of training a single tree on the full
feature set, we train an ensemble of smaller trees each
on a random subset of the features, and aggregate the
predictions of each small tree into our final prediction
for a sample. We discuss the details of each in turn.

3.1 Local Outlier Factors

The Local Outlier Factor (LOF) algorithm is an un-
supervised algorithm developed by [3] that assigns, to
every data point, a numeric score representing its like-
lihood of being an outlier. Higher scores correspond to
a greater “outlier factor”. The intuition behind LOF
is that points whose ‘local density’ is much less than
the local density of their nearest neighbors are highly
likely to be outliers. The following figure from [3] illus-
trates this idea by showing the density around point p
compared to the density around its nearest neighbors.

Concretely, the LOF score of every example i is
calculated using the equation

LOF (i) =

∑
n∈Nk(i)

lrd(n)
lrd(i)

|Nk(i)|
(1)

Nk(i) is the set of closest examples, or neighbors, that
are within kDist(i), where kDist(i) is the distance of
the kth nearest example to i. Thus |Nk(i)| = k, usually,
but it may be greater than k if multiple points are tied
as the kth nearest neighbor to i.

In (1), the quantity lrd(i) is known as the local
reachability density of point i, and it represents the
density of points in a local region around i. It is given
mathematically by

lrd(i) =

(
|Nk(i)|∑

n∈Nk(i)
reachDk(i, n)

)
(2)

where the reachability distance is defined as
reachDk(i, n) = max{kDist(n), dist(i, n)}.
The scores generated by LOF tend to 1.0 for points
that are clearly not outliers, and scores higher than 1.0
indicate an increasing likelihood of being an outlier.

LOF has three parameters that need to be chosen
by the user: the value of k, which controls how many
neighbors we consider “local” to a point, the distance
metric for comparing points, and the threshold score for
declaring a point as either “normal” or “abnormal”.

3.2 Binary Decision Trees

Decision Trees (DTs) are a supervised learning algo-
rithm that can learn complex decision boundaries for
handling both classification and regression problems.
The algorithm works by constructing a tree from the
training data in which interior nodes correspond to one
of the input features and the leaf nodes contain a pre-
diction of the output value or category. Each interior
node also contains a cutoff value, and in a binary DT
like we have implemented, a left and a right subtree. To
make a prediction using a DT, we walk down the tree
from the root with our feature vector, branching left at
each node if our feature is <= the cutoff value at the
node, and right otherwise, until we reach a leaf.

In constructing our DT, we intuitively want to put
those features most strongly correlated with the classi-
fication near the top of the tree, so that we make our
most important decisions first. Non-informative fea-
tures should be placed lower, near the leaves, or as an
optimization they may be removed entirely. We quan-
tify these notions through the concept of information
gain between the feature and the label, which is for-
mulated in terms of the related quantities entropy and
conditional entropy :

Entropy:

H(X) = −
∑m

j=1
pj log pj (3)

Conditional Entropy:

H(Y |X) =
∑

j
P (x = vj)H(Y |X = vj) (4)

Information Gain:

IG(Y |X) = H(Y)−H(Y |X) (5)

The quantity IG(Y |X) represents how much know-
ing X tells us about the value of Y . With these def-
initions, constructing the tree is relatively straightfor-
ward: beginning at the root, for every interior node we

2

select the feature having the greatest information gain
with the class label, and we choose the cutoff value as
that value having the highest specific conditional en-
tropy for that feature. Once a feature has been selected
for a node, it cannot be selected again for any of its chil-
dren. The left and right subtrees are trained recursively
on the appropriate subset of the training data, based
on the feature and cutoff selected. The process stops
when all features have been used or when the number
of training samples in a node becomes too small. In our
implementation, we stop building the tree when there
are |S| <= 10 training samples at a node, or when all
samples at a node are identical. In predicting the label
for a leaf, we use the following heuristic: if any of the
training examples that made it to the leaf are abnor-
mal, we predict “abnormal”, else we predict “normal”.
We made this decision to increase the number of ma-
licious connections we correctly classified (fewer false
negatives) at the expense of misclassifying some benign
connections as abnormal (more false positives).

3.3 Random Forests

In practice, single decision trees often tend to overfit
the training data, and may generalize poorly as a conse-
quence [10]. Random forests is a technique for reducing
DT test error due to overfitting. Instead of training a
single DT on the entire set of features, we instead train
an ensemble of n trees, each considering only a random
subset of m of the features. In making a prediction for
a test example, we generate the n predictions from each
tree and we output our final classification as the mode
of these predictions.

Our implementation uses ensembles of n = 20 trees,
each trained on a random subset of m = 11 features.
We chose m = 11 because, after expanding symbolic
features in binary sub-features, each connection con-
tains 122 distinct features, and there is evidence in the
literature that m ≈

√
|F | is usually a good choice. We

had to alter our heuristic for leaf predictions from the
single DT case: for forests, we choose the prediction for
each leaf to be the mode of all training samples it saw.
Without this change, our random forest were classify-
ing every sample they saw as “abnormal”, so a more
conservative prediction policy was necessary.

4 Experimental Results

The results for the LOF algorithm are shown in the
following plot. The y axis shows the percent of the ex-
amples that were classified correctly. The x axis shows
the trial number, where a trial number uses a partic-
ular percentage of the examples as the k value and
corresponding threshold value. The threshold values
were chosen for each k value using a method proposed
by [7] where the LOF score of five thousand random
“normal” samples was calculated, and then the thresh-

old was chosen such that 2% of the samples would be
classified as “abnormal” if they were being tested. The
distance metric used for comparing feature vectors was
chosen to be the cosine distance after some preliminary
experiments.

trial # 1 2 3 4 5
% k 10 15 20 25 30

threshold 1.65 1.92 2.46 2.87 3.00

trial # 6 7 8 9
% k 35 40 45 50

threshold 3.16 3.39 3.50 3.85

Classification accuracy as a function of training set
size for single DTs is shown below. Test dataset 1 con-
tained dfnsdlf samples, and test dataset 2 contained
311029 samples.

Classification accuracy as a function of training set
size for random forests of 20 DTs, each trained on 11
features can be seen in the following plot. Only test
dataset 2 was used.

3

Distribution of values for the ”duration” feature in
test dataset 2 is shown in the below histogram.

A zoomed-in view of the same distribution for test
dataset 2 can be seen in the next plot.

5 Discussion

Our LOF results were poor: we were not able to achieve
better than chance accuracy for both normal and ab-

normal connections simultaneously. We have two the-
ories of why this was the case. First, the entire con-
cept of anomaly-based intrusion detection is predicated
on the assumption that intrusions, or malicious connec-
tions, are relatively rare or anomalous. Interestingly,
we found this was not the case in the KDD ’99 dataset:
both the training and test data contain 80% “abnor-
mal” connections! This means that LOF is fighting an
uphill battle when trying to identify abnormal connec-
tions as outliers. Secondly, LOF is very sensitive to the
distribution and size of the dataset relative to the pa-
rameter k. Too small a k, and points won’t look very
far when calculating their local densities: even small
clusters of outliers may be self-reinforcing. Too large
a k, on the other hand, and the local neighborhood
becomes too big; points are compared against essen-
tially the entire dataset, so everything looks abnormal.

Random forests performed reasonably well at clas-
sifying abnormal connections, but did worse than we
expected at recognizing normal connections. We hy-
pothesize two reasons for the poor performance: first,
we implemented them as a safeguard against overfit-
ting the training data, but our single DT results show
no evidence of overfitting! If the test and training data
are mostly homogeneous, much of the benefit of random
forests is lost. Secondly, our single-DT analysis (below)
indicates that very few features were significantly in-
dicative of the final classification: most features were
just noise. By restricting each tree in the forest to a
random subset of the features, then, we were actually
hurting our predictive power by weakening the influence
of the best features.

Somewhat surprisingly, single decision trees were
the best-performing algorithm we studied: they were
able to achieve over 90% classification accuracy for ev-
ery training sample size and test dataset we attempted,
and near-perfect classification of abnormal connections.
We’d expected that single trees would show evidence of
overfitting by having higher testing errors; the fact that
they did not suggests that the test data does not vary
significantly from the training data.

An important advantage of DTs is that the decision
boundary they produce is framed in terms of the orig-
inal feature set, so their results are relatively natural
to interpret. We took advantage of this by dissecting
some of our best-performing DTs to see what insights
we might glean about the dataset. We found that the
“best” features, those most strongly predictive of the
classification, were connection duration and the proto-
col/service (udp, icmp, smtp, etc.), while the “worst”
predictive features were the time-averaged features for
a destination host (number of connections in the last
2s, for example).

Armed with this knowledge, we investigated the dis-
tribution of these features in test dataset 2 (the distribu-
tions for the ”duration” feature are presented above).
We found that duration, for example, showed a very

4

clear correlation with classification: abnormal connec-
tions tended to be relatively short-lived, while virtually
all lengthy connections represented benign network traf-
fic, and the other top features showed similar associa-
tions. With this knowledge, we can begin to understand
why our decision trees performed so well on this data:
they excel at finding the most informative features to
split on, and our analysis indicates that these same fea-
tures were the most predictive in both the training and
test data.

6 Conclusions & Future Work

While our single DT results are encouraging, the accu-
racy of our random forest and LOF algorithms could
be improved. For random forests, we can think of two
likely enhancements: first, we should aggressively re-
move training features that are shown to have little
predictive power, either through their information gain
scores or some other feature selection algorithm. This
would reduce the probability of some tree being trained
with only poor features. Secondly, instead of outputting
the mode of the 20 trees as our final prediction, we could
assign weights to each tree based on their performance
on the training data, and take a weighted average of
their predictions as our final result. This technique,
known as “boosted” random forests, has proven to be
extremely powerful in many applications.

In the case of LOF, as with random forests, we might

be able to improve performance by restricting our anal-
ysis to fewer, more important features, so that the dis-
tances between normal and abnormal feature vectors
would increase. Secondly, while the authors in [7] were
able to achieve 74% classification accuracy, they were
using certain time-based features not present in the
KDD data itself. If, like those authors, we went back
to the raw 1998 DARPA dataset and used tcptrace or
a similar utility, we could extract these same features
and more, which could indicate which subsets of data
we should apply LOF scoring to for best results.

We note that our approaches are complementary:
the importance of features learned in training single
DTs can be fed back in to inform feature selection in
random forests and LOF, and these models can general-
ize better than DTs to different distributions (i.e., new
network attacks) once trained.

In conclusion, we have implemented three machine
learning algorithms for detecting anomalies in network
connection data. We have analyzed their performance
and found that single decision trees give the best per-
formance for this application, with surprisingly good
classification accuracy. In addition, they can expose
valuable properties of the underlying data, which may
inform future analysis. Our results convince us that
while network intrusion detection is a very hard prob-
lem, machine learning algorithms can help and will have
an important role to play in future NID systems.

References

[1] Testing intrusion detection systems: A critique of the 1998 and 1999 darpa intrusion detection system evaluations as performed
by lincoln laboratory, ACM Trans. Inf. Syst. Secur. 3 (2000), no. 4, 262–294.

[2] Dhruba Kumar Bhattacharyya and Jugal Kumar Kalita, Network anomaly detection: A machine learning perspective, CRC Press,
2013.

[3] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander, Lof: identifying density-based local outliers, ACM
Sigmod Record, vol. 29, ACM, 2000, pp. 93–104.

[4] KDD Cup 1999 Data, Kdd cup 1999 data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Web. Nov 2014.

[5] IBM. IBM Security Services 2014 Cyber Security Intelligence Index, Ibm statistics on data breach epidemic, http://www-935.ibm.
com/services/us/en/it-services/security-services/data-breach/, April 2014, Web. 16, Nov 2014.

[6] CBSNews. CBS Interactive, Fbi director james comey on threat of isis, cybercrime, http://www.cbsnews.com/news/

fbi-director-james-comey-on-threat-of-isis-cybercrime/, October 2014, Web. 16, Nov 2014.

[7] Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivastava, A comparative study of anomaly detection
schemes in network intrusion detection., SDM, SIAM, 2003, pp. 25–36.

[8] Shawn Ostermann, Tcptrace-official homepage, http://www.tcptrace.org/, Web. Nov 2014.

[9] Robin Sommer and Vern Paxson, Outside the closed world: On using machine learning for network intrusion detection, Security
and Privacy (SP), 2010 IEEE Symposium on, IEEE, 2010, pp. 305–316.

[10] Vladimir Svetnik, Andy Liaw, Christopher Tong, J Christopher Culberson, Robert P Sheridan, and Bradley P Feuston, Random
forest: a classification and regression tool for compound classification and qsar modeling, Journal of chemical information and
computer sciences 43 (2003), no. 6, 1947–1958.

[11] MIT Lincoln Laboratory: Communication Systems, Cyber Security: Cyber Systems, and Technology, Darpa intrusion detection
evaluation, http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/1998data.html, Web. Nov 2014.

[12] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali-A Ghorbani, A detailed analysis of the kdd cup 99 data set, Proceedings of
the Second IEEE Symposium on Computational Intelligence for Security and Defence Applications 2009, 2009.

5

