Email Filtering by Response Required

Christopher Knight

December 9, 2014

Abstract

This project explores the feasibility of applying
machine learning to answer the following ques-
tion: how likely is it that one will have to read
and respond to an email that has just arrived?
To answer this question, a data set was derived
from several month’s worth of a software engi-
neers work email and served as the input to both
a multinomial naive Bayes classifier as well as an
SVM classifier. Specifically, the project explores
the details of which email features provide the
most useful information in terms of predicting
the output.

Neither of the two models studied was abso-
lutely better than the other. With that being
said, satisfactory prediction performance was
never achieved from any of the features with ei-
ther of the models due to the classification de-
pending on far more information than what was
available in the immediately preceeding email.

1 Introduction

Very frequently I am interrupted by the notifi-
cation of a new email arriving. Should I break
away from my current task to read it or not?
Ideally, T would only accept the disturbance to
my work if said email requires an urgent re-
ply. Each of the following sections in this paper
outlines the steps I took to answer this ques-
tion. My goal was to model various features
of my Qualcomm email data set using multino-
mial naive Bayes and SVM classifiers to deter-
mine which feature is most effective at predict-
ing whether an email requires a response from
me.

In section 2, I detail the data collection pro-
cess and the format/content of the resultant

data set. In section 3 I discuss the two mod-
els I use and the reasons why they were chosen.
In section 4, I fit the models to the data and
present the results with respect to what features
are the most valuable. In section 5 the results
are discussed and conclusions presented. Lastly,
in section 6 I discuss further directions that this
project could take.

2 Source Data

Considering the data set for this problem wasn’t
in a usable form at the start of the project, a sig-
nificant amount of time went into data extrac-
tion and manipulation. The result is a Python
script that is capable of accessing email via the
Microsoft Outlook MAPI COM interface. The
program iterates through all the received email
in the local Microsoft Outlook account within a
specified time period and populates various data
structures that allow easy access to the source
data for the features' with which I am interested
in experiementing. Running the script results in
a feature matrix written to disk for each of the
features being examined as well as the classifi-
cation matrix. The classification matrix has the
emails to which I replied classified as the posi-
tive class. Refer to Figure 1 for the list of top
level features.

Each feature matrix contains a row for each
email that I received.” Each column is a sub-

"When I say ‘feature’ here I am referring to an aspect
of the email. Each of these features almost surely results
in more than 1 column worth of data in the feature matrix
itself

I implicitly filtered out a large set of the negative
class by only examining the subset of received email that
has a reasonable chance of requiring a reply (i.e. email
sent to massive email lists to which I am subscribed are
not included).



component of the feature.

Raw Features Ref. Name
‘Body’ term frequency body
‘Subject’ term frequency | subject

‘To’ names to

‘CC’ names ce

‘From’ name from
Derived Features Ref. Name
‘Body’ TF-IDF bodytfidf
‘Subject” TF-IDF subjecttfidf

My fraction of ‘To’ | toprop
My fraction of ‘CC’ | ccprop

Figure 1: Tables of the raw and derived features
I used for modeling and the name by which 1
will refer to them.

I gathered 3 different time periods worth of
data: 10 days (269 emails with 36 positives),
60 days (2207 emails with 195 positives), 120
days (4094 emails with 426 positives). All of
the periods end at the same point in time. Addi-
tionally, all features that depended on indexing
text fields (subject, body, bodytfidf, subjecttfidf)
were treated with the Porter2 stemming algo-
rithm before any frequencies were computed.[2]

2.1 Raw Features

The body feature was sourced from the BODY
of each email. A body dictionary was con-
structed by splitting up the text and removing
various punctuation.? Column i for each email
is the number of times token at index ¢ in the
dictionary occured in the email. Similarly, the
subject feature was constructed the same way
from the SUBJECT field and had indices that
referred to its own associated subject token dic-
tionary.

The last three raw features I extracted were
sourced from the TO, CC and FROM fields.
Column 7 for each email in these feature matrices
was a binary feature corresponding to whether
or not the person at index 7 in the associated
person dictionary was present in the respective
field of the email.

3Note that I explicitly only looked at the body content
of the top level email. Quoted material from prior emails
in the thread was discarded.

2.2 Derived Features

The first two derived features that I constructed
changed the feature vector from being raw fre-
quencies of the term to be the TF-IDF metric of
the term.[6] I theorized that this would improve
the algorithms ability to train on the more “im-
portant” words in each email rather than the
dead words.

The last two derived features capture the per-
centage of the email’s audience made up by me.
The idea is that, for example, if I'm one of only 2
people receiving the email, then I'm more likely
to reply than if I were 1 of 50 people receiving
the email. If I'm not explicity in the TO or CC
fields, the associated toprop or ccprop feature
will be zero. If I'm present in either of those
fields, this feature is the inverse of the number
of recipients in the field. See equation 1 below.

1{’Chris Knight’ € Field}
| Field|

Fieldypo, = (1)

3 Models

Multinomial naive Bayes was selected as the
initial model due to its very simple implemen-
tation, lack of complex, empirically-determined
model parameters, and reasonable performance
on text-classification problems. SVM was se-
lected so as to possibly fit a far more complex
decision boundary (when using a non-linear ker-
nels), thus giving a richer model. Additionally,
a large amount of email history is available and
SVM is better able to take advantage of the ad-
ditional data points in terms of providing better
predictive accuracy.

The metrics used to explore the performance
of these various features are the classification er-
rors and the F1 score*. The F1 score attempts
to provide a good measure of a models accuracy
by taking into account the models precision as

4An F1 score of 1 indicates the model perfectly clas-
sifies the given data. The F1 score is very sensitive to
the number of false positives and false negatives relative
to the true number of positives and negatives, respec-
tively, giving a powerful indicator of model success even
in imbalanced data sets.



well as recall.[5] See equation 2.

5 (precision - recall)

Fl1= 2)

precision + recall

I'll ' be focusing almost exclusively on the F1
score as it is a better indicator of success when
dealing with data sets as imbalanced as mine.

4 Results

In this section, I train multinomial naive Bayes
as well as SVM on each of the aforementioned
features and present the results. For both of the
below models, I ran k-fold cross validation with
k = 10 on all 3 timeframes. The error metrics
reported for each timeframe are averaged over
all 10 folds.

4.1 Naive Bayes

Multinomial naive Bayes was run against each
feature to determine each feature’s value. To
start off, let us only examine the body feature
in the 120 day data set. The classification error
was 9.35% on the training set and 13.96% on
the test set. At first glance those values would
appear reasonable, if not a bit high. However,
the confusion matrices presented in Figure 2 for
the same scenario tell us that our classifier was
doing a mediocre job fitting the training set and
a downright terrible job predicting the test set.
For the rest of this paper, I will be focused on
the F1 score.

Training Set | Predict = 0 | Predict = 1

Truth = 0 3242.5 56.0

Truth =1 288.2 94.3
Test Set | Predict = 0 | Predict =1
Truth = 0 347.5 19.0
Truth =1 38.1 4.4

Figure 2: Training and testing confusion ma-
trices that resulted from training multinomial
naive Bayes on body. Averaged over all runs of
10-fold CV.

The full results of the MNB runs can be seen
in figure 3. MNB behaves similarly on the body,
subject, and subjecttfidf features with the most
valuable model obtained coming from either the

subjecttfidf or bodytfidf features. The to, cc,
from, toprop, and ccprop features were practi-
cally useless as they resulted in a model with
training and test F1 scores below 0.2 for all data
sizes.

Interestingly, the only feature on which MNB
was able to decently model the training set was
bodytfidf. All the other features had F1 scores
below 0.5 on the 60 and 120 day training sets.
This indicates a serious bias problem with our
model with respect to features other than bodyt-
fidf as we can’t even properly model our training
data. That being said, bodytfidf was capable of
modeling the training data, but failed to gener-
alize and still performed poorly on the test data.

4.2 SVM

Next, I ran SVM against each feature. I used
the C-SVM implementation of SVM present in
LIBSVM for Matlab.[1] According to the SVM
guide associated with the LIBSVM authors, the
imbalance in my data set can be compensated
for by using different weight parameters for each
class.[3] T ran an empirical exploration of the
weights for my positive class and significantly
improved my results by weighting the positive
class 5 times more than the negative class. That
is, T used C* = 5 and C~ = 1 in the below
formulation of C-SVM (equation 3). The full
SVM results can be seen in figure 4.

f)=gutw s Ot Y G+ Y & @)

yi=1 Yi=—

Overall, SVM is more versatile and is capable
of obtaining at least a mediocre model on the
majority of the features. The only feature that
completely failed was ccprop. Features body and
bodytfidf extremely overfit the training data and
had the next most lackluster performance after
ccprop. The rest of the features performed com-
paritively well with subject, to, and subjecttfidf
being the best with obtaining stable F1 scores
on the test set between 0.3 and 0.4 for both the
60 day and 120 day data sets.



5 Conclusions

The overall problem that plagued this project
was the high bias error associated with the ma-
jority of the model-feature pairings which lead
to significant underfitting and inability to ade-
quately fit even the training data. Furthermore,
the few models that were able to fit the training
data well (MNB run on bodytfidf and C-SVM
run on body and bodytfidf), failed to generalize
and ended up significantly overfitting the train-
ing data.

I believe that these problems all stem from
the fact that I didn’t have what I would con-
sider “complete” data for this problem. Specifi-
cally, the following aspects of the problem were
not captured appropriately in the features: (1)
Only 1 person within a role or team needs to pro-
vide a response. Responses from those “equiva-
lent” people should be included in the positive
class. (2) Responses can be sent over different
media. In my job it is common to interact with
someone via instant message after receiving a
critical email rather than emailing a reply. Al-
ternatively, I might just go to their office rather
than sending a reply. (3) Multiple emails might
be exchanged on the same thread between when
an email was sent and when I send my reply.
In this case, the features that triggered the re-
ply are not in the email that occured immedi-
ately prior, but several emails ago, which is not
a scenario that can be captured with my current
approach.

Additionally, it’s important to note that as
people switch projects and change what they are
working on over time, a model trained on vari-
ous features 6 months ago might do a very poor
job generalizing to the current email flow. This
can be seen even in my data sets where some fea-
tures improved performance when moving from
10 days of history to 60 days but either stayed
the same or in fact got worse when moving up
to 120 days of history.”

5This change could also be attributed to the curse of
dimensionality as the dimensionality of the text features
increased dramatically as I increased the timeframe.

6 Further Study

I think the largest gains in this problem space
will come from improved feature selection that
would better capture the aspects discussed
above. Along another line of thought, if I had
more time I would have liked to explore the pos-
sible improvements to the MNB model outline
by Rennie et al.[4]

References

[1] CHAaNG, C.-C., anp LN, C.-J. LIB-
SVM: A Library for Support Vector Ma-
chines. Department of Computer Science,
National Taiwan University, 2001.

[2] CHapUuT, M. stemming 1.0. https:
//pypi.python.org/pypi/stemming/1.0,
Feb. 2010. Python implementation of the
porter2 stemming algorithm.

[3] Hsu, C.-W., CHANG, C.-C., AND LIN, C.-
J. A Practical Guide to Support Vector Clas-
sification. Department of Computer Science,
National Taiwan University, Taipei, Taiwan,
2003.

[4] RENNIE, J. D. M., SHiH, L., TEEVAN, J.,
AND KARGER, D. R. Tackling the poor as-
sumptions of naive bayes text classifiers.

[5] WIKIPEDIA. F1 score. http://en.
wikipedia.org/wiki/F1_score. Wikipedia
page for the F1 score.

[6] WIKIPEDIA. tf-idf. http://en.wikipedia.
org/wiki/T£%E2%80%931idf. Wikipedia
page for the TF-IDF metric.


https://pypi.python.org/pypi/stemming/1.0
https://pypi.python.org/pypi/stemming/1.0
http://en.wikipedia.org/wiki/F1_score
http://en.wikipedia.org/wiki/F1_score
http://en.wikipedia.org/wiki/Tf%E2%80%93idf
http://en.wikipedia.org/wiki/Tf%E2%80%93idf

body
1
0.8 body train
— body test
0.6
0.4
0.2
0
0 50 100 150
Time Spanned by Data (days)
to
1
08 to train
to test
0.6
0.4
0.2
0
0 50 100 150
Time Spanned by Data (days)
from
1
0.8 from train
— from test
0.6
0.4
0.2
ol—=
0 50 100 150
Time Spanned by Data (days)
subjecttfidf
0.8 subjecttfidf train
|| = subjecttfidf test
0.6
\’_'
0.4
I
0.2
0
0 50 100 150
Time Spanned by Data (days)
ccprop
1
08 ccprop train
ccprop test
0.6
0.4
0.2
0
0 50 100 150

Time Spanned by Data (days)

Figure 3: F1 score of MNB on each feature with

no scaling of the data.

F1 Score

F1 Score

F1 Score

F1 Score

subject
1
0.8 subj.ect train
— subject test
0.6
0.4 ¥
02f —
0
0 50 100 15C
Time Spanned by Data (days)
cc
1
08 cc train
cc test
0.6
0.4
0.2 \/
\’/
0
0 50 100 15C
Time Spanned by Data (days)
bodytfidf
1
0.8l bodytfidf train
' — bodytfidf test
0.6
0.4
o2f
0
0 50 100 15C
Time Spanned by Data (days)
toprop
1
08 toprop train
— toprop test
0.6
0.4
0.2
0
0 50 100 15C

Time Spanned by Data (days)

body subject

1 1
0.8 body train 0.8 subjlect train
— body test ° — subject test
0.6 so06f__
j53
%]
0.4 < 04
T I—
02f _—— 0.2
0 0
0 50 100 150 0 50 100 15C
Time Spanned by Data (days) Time Spanned by Data (days)
to cc
1 1
08 to train 08 cc train
to test ° cc test
0.6 5 0.6
j53
— %]
0.4 — 04 ~—
/ w
0.2 02
0 0
0 50 100 150 0 50 100 15C
Time Spanned by Data (days) Time Spanned by Data (days)
from bodytfidf
1 1
0.8 from train 0.8 bodytf!df train
— from test ° — bodytfidf test
0.6 5 0.6
@
04 ¥ o 04
¥ o
0.2 02  _——
0 0
0 50 100 150 0 50 100 15C
Time Spanned by Data (days) Time Spanned by Data (days)
subjecttfidf toprop
1
0.8 subj_ecttf?df train 0.8 toprop train
— subjecttfidf test ° — toprop test
0.6 5 0.6
O
%]
0.4 « 04
- i
02 02 /\
0 0
0 50 100 150 0 50 100 15C
Time Spanned by Data (days) Time Spanned by Data (days)
ccprop
1
08 ccprop train
— ccprop test
0.6
0.4
0.2
0
0 50 100 150

Time Spanned by Data (days)

Figure 4: F1 score of C-SVM on each feature
with no scaling of the data.



	Introduction
	Source Data
	Raw Features
	Derived Features

	Models
	Results
	Naïve Bayes
	SVM

	Conclusions
	Further Study

