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From Classical To Hip-Hop: Can Machines Learn
Genres?
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Abstract—The ability to classify the genre of a song is an
easy task for the human ear. After listening to a song for just
several seconds, it is often not difficult to take note of that song’s
characteristics and subsequently identify this genre. However,
this task is one that computers have historically not been able
to solve well, at least not until the advent of more sophisticated
machine learning techniques. Our team explored several of these
techniques over the course of this project and successfully built
a system that achieves 61.873% accuracy in classifying music
genres. This paper discusses the methods we used for exploratory
data analysis, feature selection, hyperparameter optimization,
and eventual implementation of several algorithms for classifi-
cation.

I. INTRODUCTION

H ISTORICALLY, attempts made by others to build music
genre classification systems have yielded fine but not

extraordinary results. Some who used the same dataset that
we used for our project, which comprises one million songs
each belonging to one of ten different genres, often chose to
reduce the number of genres they attempted to identify, while
those who decided to work with all ten genres only achieved
accuracy of 40% [1].

The hardest part of music classification is working with time
series data. The cutting edge of machine learning research is
looking into more effective ways of extracting features from
time series data, but is still a long way off. The most promising
attempt is done by Goroshin et. al in their paper Unsupervised
Feature Learning from Temporal Data [2].

The problem with temporal data is that the number of
features varies per each training example. This makes learning
hard, and in particular makes it hard to extract information on
exactly what the algorithm is using to “learn”. Algorithms
that extract temporal features can be thought of as extracting
a more reasonably sized set of features that can be learned
from. To address the difficulties of working with temporal
data, we used the idea of an acoustic fingerprint [3] to extract a
constant sized number of features from each song, improving
our accuracy on the testing set substantially.

We also used Bayesian Optimization, a relatively modern
technique, to optimize the hyperparameters of our classi-
fication algorithms. This increased our accuracy by a few
percentage points, and is substantially faster than grid search
and leads to better results than random guessing.

In short, the task of developing a music genre classification
algorithm is not a trivial one, and often requires substantial
tuning. The best models we discuss in this paper achieve an
accuracy of 61.9%.

II. THE DATASET AND FEATURES

For this project we used the Million Song Genre Dataset,
made available by LabROSA at Columbia University [4].

This dataset consists of one million popular songs and
related metadata and audio analysis features such as song
duration, tempo, time signature, timbre for each “segment”,
and key. In this dataset, each training example is a track
corresponding one song, one release, and one artist. Among
the many features that this dataset contains for each track is
genre, which was of obvious importance to our project as it is
the “ground truth” which we aimed to predict with our models.
In particular, there are 10 genre lables, distributed according to
Table I. This dataset is clearly imbalanced, making the ability
to accurately classify genres other than ”classic pop and rock”,
which makes up about 40% of the dataset, a challenge.

We changed the original dataset so as to not increase the
size of the features to over 100, while adding to the ability
to differentiate between genres. The original Million Song
Dataset contains timbre vectors for each segment of each song,
where a segment is defined as a small section of the song,
usually denoting when a new note comes in. The creators of
the dataset performed MFCC on the data, which is explained in
greater detail in Sahidullah and Saha [5], and then performed
PCA on the results of MFCC to separate the timbre of each
segment into 12 principle components. The genre dataset only
includes the average and variance of each of these segments,
which we felt did not contain enough information to describe
the data. To remedy this issue, the solution we came up with
was to take the most meaningful segment of the song, using
a variation on the idea of an acoustic fingerprint [3].

To achieve this, we used a variation on the idea of an
acoustic fingerprint [6]. Research shows that when a person is
listening to a piece of music, the brain’s attention is heightened
during transitions, which frequently coincide with the loudest
parts of the music. As such, we decided determine the loudest
point of each song in our dataset and use the corresponding
timbre feature vector for that segment, an idea that is based
upon work done by Vinod Menon at the Stanford School of
Medicine [7]. The use of this feature improved our model
accuracy to approximately 58% from around 55% originally.
For further improvements, we multiplied the loudness of that
particular segment and the individual timbres of that segment,
which boosted accuracy to 60%.

To get a better understanding of the dataset, we first nor-
malized and scaled the dataset, and then plotted the data using
PCA in Fig. 2. We then plotted the data with the new added
features, which does seem to have slightly better clustering of
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classes in Fig. 3.

III. METHODS

Fig. 1: Random Forest Learning Curve

A. Random Forest

After completing preliminary exploratory data analysis, we
shifted our focus to various supervised learning methods,
turning first to tree-based methods, which segment the feature
space of a data set into distinct, non-overlapping regions
using a greedy approach known as recursive binary splitting.
Prediction of a test example using a classification tree is
performed by determining the region to which that example
belongs, and then taking the mode of the training observations
in that region. A classification tree is “grown” by successively
splitting the predictor space at a single cutpoint which leads
to the greatest possible reduction in some chosen measure.
For our project, we chose as our measure the Gini index (G),
which is often thought of as a measure of region purity:

G =

K∑
k=1

p̂mk(1− p̂mk)

where K is the number of classes and p̂mk is the proportion
of training observations belonging to the kth class in the mth
region. Thus, for every iteration of recursive binary splitting,
the splitpoint s is chosen so as to minimize the Gini index and
thus maximize the purity of each of the regions. This splitting
of the feature space continues until a stopping criterion is
reached (for example, if each region in the feature space
contains fewer than a certain number of training observations).
While one single classification tree might not have extraor-
dinary predictive accuracy in comparison to other machine
learning methods, aggregation of decision trees can substan-
tially improve performance. For our project, we chose to use
a random forest of classification trees as one of our prediction
methods. Random forests are constructed by building a number
of decision trees on bootstrapped observations, where each
split in each tree is decided by examining a random sample of
p out of n features; in this way the random forest method is an

improvement upon simple bootstrap aggregation of trees as it
decorrelates the trees [8]. For the purposes of our project, we
used python’s sklearn package to construct a random forest on
our test data set. We first used Bayesian optimization, which
is explained in greater detail in section 5, to tune several
hyperparameters. The results of this optimization indicated that
the optimal minimum number of samples required to split an
internal node in a tree is 2, the optimal minimum number of
samples that must be in a newly created leaf is 1, and the
optimal number of trees in the forest is 300. Having tuned
these parameters, we built a random forest classifier using our
training set, which we then used to make genre predictions for
our test set. For each split we considered p =

√
n features.

The random forest achieved accuracy of 61.9% and an F1
score of 57.9%. The learning curve for this method is shown
in Fig. 1, and while our results seem to be an improvement
upon those of previous years, the random forest suffers from
high variance. That is to say, the model captures too much of
the variance and noise in the training set, and as a result the
generalization error suffers.

TABLE I: MSD Genre Dataset Statstics

Genre Counts Percent
classic pop and rock 23, 895 40.09%

classical 1, 874 3.14%
dance and electronica 4, 935 8.28%

folk 13, 192 22.13%
hip-hop 434 0.73%

jazz and blues 4, 334 7.27%
pop 2, 103 2.71%

metal 1, 617 3.53%
punk 3, 200 5.37%

soul and reggae 4, 016 6.74%
Total: 59, 600 100%

Fig. 2: PCA With Original Features

B. Gaussian Discriminant Analysis

In addition to tree-based methods, we also explored two
different types of Gaussian discriminant analysis. First, we
performed linear discriminant analysis on our training set
using interactive polynomial features of degree 2. Before
running the analysis, we created the interactive features by
computing the (element-wise) product of every pair of distinct
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Fig. 3: PCA With Added Features

features. That is to say, for every pair of features n1, n2
where n1 6= n2, we added n1 ∗ n2 to our feature space.
After completing this pre-processing, we used python’s sklearn
package to perform linear discriminant analysis. This method
assumes that our observations x1, x2, . . . xn are drawn from
a multivariate Gaussian distribution with class-specific mean
vectors and a common covariance matrix. Thus, the classifier
assumes that an observation from the jth class, for example,
is drawn from a distribution N(µj ,Σ). The assumption that
each class has the same covariance matrix Σ forces the
decision boundaries in the feature space generated by linear
discriminant analysis to be linear. The diagnostic results of
this analysis are summarized in Table II.

TABLE II: LDA Diagnostics

Genre Precision Recall F1-score Support
Classic pop and rock 0.61 0.69 0.65 4752

Punk 0.49 0.53 0.51 617
Folk 0.67 0.59 0.63 2680
Pop 0.27 0.23 0.25 327

Dance and electronica 0.61 0.49 0.54 1029
Metal 0.60 0.70 0.65 415

Jazz and blues 0.60 0.46 0.52 846
Classical 0.66 0.71 0.69 367
Hip-hop 0.22 0.53 0.32 98

Soul and reggae 0.42 0.37 0.39 789
Average / Total 0.59 0.59 0.59 11920

C. Bayesian Optimization

Bayesian optimization tries to address the global optimiza-
tion problem

x∗ = arg max
x∈X

f(x)

where f(x) is a black box function, meaning that we have
knowledge of the input and output of the function, but have
no idea how the function works. Bayesian optimization is a
way of solving this optimization problem effectively.

To use Bayesian optimization, we first decide on a prior
distribution for the unknown functions. This essentially cap-
tures our belief about the family of functions that the unknown
function comes from. The then decide on an acquisition
function, which is used to select the next point to test [9].

Fig. 4: Linear Discriminant Analysis Learning Curve

1) Gaussian Processes: As the prior to our Bayesian opti-
mization problem, we used a Gaussian Process (GP). Gaussian
Processes are defined by a multivariate Gaussian distribution
over a finite set of points [9]. As more points are observed,
the prior is updated, as in 5. What makes Gaussian processes
useful for Bayesian optimization is that we can compute the
marginal and conditional distributions in closed form. For
more information on Gaussian Processes, consult Rasmussen
and Williams [10].

Fig. 5: Gaussian Process Prior

2) Acquisition Function: In order to optimize our function,
we want to test points that have the highest chance of being an
argmax. Our function f(x) is drawn from a Gaussian process
prior, meaning yn ∼ N (f(xn), ν). The acquisition function is
the function the chooses the next point to try. With a Gaussian
process, there are a few acquisition functions to choose from,
but the one we used was expected improvement.

Expected improvement chooses the point that maximizes the
expected improvement over our current best point [11]. With
a Gaussian process, this has a closed form

a(x|X1:t) = E (max{0, ft+1(x)− ft(x∗)}|X1:t)

= σ (−uΦ(−u) + φ(u))
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Classifier Precision Recall F1
Bernoulli Naive Bayes 0.54 0.57 0.54
Multinomial Naive Bayes 0.53 0.50 0.50
Latent Dirichlet Allocation (10 topics) 0.36 0.54 0.41
Latent Dirichlet Allocation (100 topics) 0.36 0.54 0.41

TABLE III: Results on 10500 training size, 4500 test size

s.t u =
ymax − µ

σ

We will not go into the details of the closed form here, but
see Snoek et al. for details [9].

3) Bayesian Optimization of Algorithms: We used Bayesian
optimization to tune the Random Forests algorithm and the
SVMs. SVMs did not perform very well on the data originally,
but after tuning the hyperparameters, the F1-score increased
from around .45 to .51. This is a non-negligible increase
that required performing only 25 iterations of Bayesian op-
timization in a couple of hours, as opposed to the hundreds
of iterations required by grid search, which did not even
finish running on the dataset provided after 12 hours. For
random forests, the accuracy of the classifier increased from
59.1% to 61.9% using Bayesian optimization. This is an
increase of about 3% percent, with minimal work from the
implementation side. Bayesian optimization took about an
hour to find a reasonable optimum, while grid search again did
not complete in a reasonable amount of time. The paramater
space examined by each of these algorithms contained 60, 000
different configurations of hyperparameters, so the fact that
Bayesian optimization was significantly more efficient is not
a surprise.

D. Lyrical Modeling

The Million Song Dataset supplied a subset of data of
210, 519 songs with lyrics in a bag-of-word (term frequency
counts) format. From this data set we were able to extract
those songs contained in the Million Song dataset to perform
supervised learning on songs with lyrical information.

1) Naive Bayes: Using the naive bayes algorithm on the
terms contained in each document we were able to construct
a generative model to predict the document’s genre. We
preprocessed the data by removing common stop words. First
we implemented Bernoulli Naive Bayes in which the features
are |V |-length vectors indicating if a term appeared in the
document or not. Next we utilized the term count in the data
by running Multinomial Naive Bayes.

2) Latent Dirichlet Allocation: Latent Dirchlet Allocation
models documents as coming from some number of topics,
each word has a probability of being genereated by some topic.
We hypothesized that the data could be modeled as documents
containin words generated from topics relating either directly
or indirectly to genre. By running Latent Dirichlet Allocation
(using the Gensim python package) with varying number of
topics we were able to generate a feature set for each document
that was the fraction of the document accounted for by each
model. Running these features through a SVM with a linear
kernel we generated class predictions

IV. RESULTS

A. Lyrics Analysis Results

The result of analysis of lyrical data was that Bernoulli
Naive Bayes performed the best. Dividing songs into topics
using Latent Dirichlet Allocation did not result in classification
gains, regardless of the number of topics. The results could
potentially be improved by using a larger data set; only 15, 000
of the 59, 600 labeled songs in the Million Song Dataset had
lyrical information. Additionally, the fact that many songs
across genres use similar words and the fact that the dataset
was multilingual affected the accuracy of classification.

B. Sound Results

Model Training Error Test Error Test F1 Score
Random Forests 0.03 0.38 0.58
Linear Discriminant Analysis 0.40 0.41 0.59

TABLE IV: Results on Pure Sound Data

V. DIAGNOSTICS

A. Confusion Matrix

In this section, we analyze how our primary models per-
formed, and discuss reasons why they did not perform even
better.Specifically, we will analyze why certain genres were
commonly confused with others. Confusing classic pop and
rock and folk was common with our models. This makes sense,
as both have similar time signatures and generally use acoustic
instruments. They also have similar loudness, which makes
differentiation even more difficult. Punk was often confused
with classic pop and rock, due to the fact that the Punk sample
size was relatively small. Additionally, these genres tend to
have similar time signatures and make heavy use the electric
guitar. Pop again was commonly confused with classic pop and
rock, which makes sense because even humans would have
trouble discerning between “classic pop” and “pop”. Most
surprising, however, was the fact that dance and electronica
was also often confused with classic pop and rock, potentially
due to a lack of training examples (as was the case with Punk).
Our hypothesis is further confirmed because of the precision
and recall of the dance and electronica class. The precision is
quite high, at around .711, while the recall is lingering around
.5. The likely explanation is the class imbalances, as classic
pop oand rock is the biggest class and thus has the highest
prior probability. Metal actually did very well in both precision
and recall, again being confused for classic pop and rock
the most frequently due to class imbalances. Jazz and blues
had very good precision, yet again bad recall, which again
is probably due to class imbalances. It seems that classical
did the best in both precision and recall, which makes sense
because it generally has a very different timbre than most other
genres. Hip-hop, the smallest class, does very poorly, and is
not worth talking about as there is not enough data to make a
comment. Soul and reggae again has very good precision, but
the recall is not great. We believe this is again due to the fact
that it is mostly acoustic, and because of the class imbalances.
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TABLE V: Confusion Matrix for Linear Discriminant Analysis

3351 202 531 101 169 81 102 26 46 190
183 318 19 10 17 58 4 7 12 22
866 20 1522 33 10 3 85 50 12 23
145 8 40 76 15 3 3 3 1 17
271 20 41 14 487 27 25 16 34 42
73 37 4 1 11 285 3 3 0 2
205 8 99 12 52 8 415 41 4 9
38 1 24 3 12 3 7 283 2 4
18 3 1 1 12 0 0 1 37 18
313 4 43 25 64 1 12 1 44 312

TABLE VI: Confusion Matrix for Random Forest

4115 30 439 0 69 24 26 7 0 18
412 196 8 0 5 24 1 1 0 11
1256 3 1318 0 11 3 21 14 0 0
286 0 30 6 6 1 0 0 0 7
589 1 67 0 285 3 23 10 0 15
156 34 3 0 1 218 0 0 0 0
435 0 138 0 8 0 258 19 0 1
75 0 38 0 6 1 10 254 0 0
76 1 1 0 7 0 0 1 0 4
631 0 42 0 35 0 1 1 0 124

B. Learning Curves

After feature selection, both of our models performed sim-
ilarly on the test set. This implies that more feature selection
work could have been done. The reason for this is that with
both a high bias algorithm, which underfits the data, and a
high variance algorithm, we get similar results (see Fig. 4
and Fig. 1). This implies that perhaps the features are not
descriptive enough.

VI. FUTURE WORK

Given more time we would work to develop or improve
on several ideas. The first idea we had was to extend the
fingerprint algorithm to find the top 3 sections of the song,
rather than the top 1. Based on these 3, we would calculate
the average and variance of the timbre vectors multiplied by
the loudness of each segment. This hopefully would provide
more data as to how different parts of the song interact, and
is a way of keeping our feature vectors small, while adding to
the acoustic fingerprint.

The second method we wanted to try was an ensemble
method to combine classifiers. Some of the classifiers had
high bias, such as Linear Discriminant Analysis, and some
had high variance, such as Random Forests. An interesting
topic that we have not had time to explore is combining these
models (along with a lyrical classifier where the data exists)
using an ensemble method, such as Bayesian model averaging
(BMA) [12]. Unfortunately, we did not have the time to code
an implementation of BMA.

Further work could also have been done with applying deep
learning to this problem. A few viable methodologies might be
to use techniques described in Unsupervised Feature Learning
from Temporal Data [2] for unsupervised feature extraction, or
use a supervised recurrent neural net to perform classification
directly. These algorithms would have been able to take into

account all of the time-series features of each song, possibly
allowing for greater prediction accuracy.

VII. CONCLUSION

To conclude, we have constructed a relatively accurate clas-
sifier to determine the genre of a given song. Processing the
acoustic features of the Million Song Dataset by identifying
the most significant (loudest) segment and feeding this data
into a Random Forest classifier, we were able to achieve
61.873% accuracy on our test set, after using Bayesian Opti-
mization to tune hyperparameters. Steps such as expanding the
dataset and feature set and using ensemble methods to combine
classifiers have the potential to improve upon on results in the
future.
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