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ABSTRACT 
 

Objective: Independent component analysis can be used with func-

tional MRI (fMRI) data to extract independent components that en-

compass a mix of true functional, resting state brain networks and 

noise.  This method is growing in popularity in the field of neurosci-

ence as a data-driven way to distinguish artifact or identify different 

networks to diagnose neuropsychiatric disorder, however most of 

this work is not automatized and is reliant on group derived tem-

plates and matching metrics that do not scale to large data.  This 

paper aimed to develop robust spatial and temporal features to au-

tomatically characterize functional brain imaging data, and to start 

preliminary work exploring group differences in more detailed sub-

networks extracted from the same data. 

 

Methods: An extensive set of 246 spatial and temporal features has 

been developed to be used to predict 7 sets of labels indicating 

different types of noise and networks represented in a large set of 

independent components derived from fMRI data.  The method em-

ploys an unsupervised learning algorithm to define functional net-

works at two levels, and a supervised learning algorithm to discov-

ers characteristic features of these networks.  Ten-fold cross valida-

tion and permutation testing is used to evaluate the models. 

 

Results: Using fMRI datasets from persons with schizophrenia and 

matched healthy controls, this method successfully distinguishes 

different types of noisy components for 5 out of 7 of the manually 

curated standards. Specifically, the model for the standard that en-

compasses all noise types performs with a cross validation accuracy 

of .8689 and area under the curve of .9286. 

 

Conclusion: This work demonstrates that noisy components can be 

computationally defined using spatial and temporal features, and, 

that automated methods can use these features to filter large data.  

Extension of this method to derive disorder specific fingerprints of 

functional networks will allow for the development of automated 

decision support systems using large, publicly available data.  

1 INTRODUCTION 

 

Understanding and subtyping of neuropsychiatric illness remains an 

unsolved challenge because of the heterogeneity of these diseases, 

and the complexity of the human brain.  The World Health 

Organization estimates 28.47% of the total years lost to illness, 

disability, and premature death in the United States are due to these 

disorders, and that they cost Americans a total of 317.6 billions of 

  
 

dollars annually 
[3]

.  Neuropsychiatric disorder, in its simplest form, 

can be understood as aberrant brain activity that leads to noticeably 

different behavior and cognition that negatively impacts daily life.  

Regardless of the etiology of the disorder, in order to infer diagnosis 

and provide treatment, a comprehensive understanding of what 

distinguishes aberrant from normal is necessary. How might this 

difference be measured? 

 

1.1 MEASURING NEUROPSYCHIATRIC DISORDER 

Asking people about their thoughts and behavior directly (self-

report), measuring behavior with tasks, or observational methods 

based on checklists (the Diagnostic and Statistical Manual  of Mental 

Disorder 4
th
 ed.) might give insight to a correct diagnosis, however 

ideally this information should come directly from the source: the 

human brain 
[2]

. Aberrant function of the human brain, when 

understood on a computational level, will be the most robust and 

consistent methodology.  What might this brain data look like? 

 

The “best” data would be a recording of the firing (action potential) of 

every single of the brain’s approximately 100 billion neurons, but 

current research is limited to single neurons (single cell recording) or 

small groups (multi-cell recording) 
[24]

.  This task is infeasible on a 

large scale for the obvious reason that is invasive.  The next best 

option is non-invasive brain imaging, such as functional magnetic 

resonance imaging (fMRI).  fMRI allows for the measurement of 

brain activity on the level of the voxel, typically a 1-3 mm cube with 

an associated value that reflects a blood oxygen level dependent 

(BOLD) response of 50K-100K neurons that has been shown to be a 

strong measure of neural activity 
[17]

.  fMRI is not detailed or perfect, 

but it represents an abstraction of neural activity for small regions of 

the brain, and is a good way for identifying large-scale patterns of 

brain function. 

 

1.2 STANDARDS FOR FUNCTIONAL NETWORKS AND NOISE 

Identifying these patterns of functional networks from resting BOLD 

data requires some standard for what constitutes a functional brain 

network, and there currently exists no such standard beyond manual 

annotation of network by an “expert” 
[23]

.  Spatial templates and 

matching procedures are commonly used to identify networks of 

interest from single-subject data; however missing is work to define 

temporal and spatial features to automatically complete this task.  

Arguably, this gap in methodology is due to the tendency of the 

neuroscience community to set extremely stringent criteria on 

analysis parameters. In this environment, efforts to establish a 

standard are likely not successful due to lack of agreement about an 

accepted acquisition protocol, processing pipeline, and the “right” 

data to use.  While the data is noisy and has high variance, patterns 

in these independent signals do exist, and an effort to break down 
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these established barriers and approach brain science more 

abstractly with large data is badly needed.  Lack of a perfect “gold 

standard” for functional networks that might be used for a classifier 

should not hold back an understanding of aberrant function of the 

human brain.  Manual annotation of networks and noise belonging to 

a dataset is far from a “gold standard,” but it is completely feasible to 

distinguish components, and will allow for the beginnings of a 

computational understanding of brain signals.  Given the current 

neuroinformatics landscape, the time for this type of work is now.  

 

1.3 THE NEUROINFORMATICS LANDSCAPE 

Large, publicly available databases of resting BOLD fMRI data of 

neuropsychiatric populations (INDI, NDAR, ABIDE, NITRC) can be 

utilized with established standards and methods from machine 

learning to discover patterns of brain function that serve as “bi-

omarkers” of disorder. The infrastructure needed to achieve this goal 

are 1) an automatic method to extract functional networks and other 

signals, “components” of the data,  2) standards to classify noise in 

the data to leave only components that represent neurological sig-

nal, and 3) unsupervised approaches to infer diagnosis.  This paper 

addresses the first two points to provide rationale for using computa-

tional fingerprints to distinguish noise from real neurological signal.  

Finally, the third point is briefly explored.  Specifically, functional 

brain primary and sub-networks can be extracted with an automatic 

approach (Independent Component Analysis, ICA), and different 

types of noise can be defined by patterns of spatial and temporal 

features. These models can then be used as filters, leaving func-

tional networks to be used to diagnose neuropsychiatric disorder. 

2 METHODS 

 

2.1 DATA  

Resting BOLD fMRI was acquired for 53 individuals (29: 

Schizophrenia, 24 healthy control) with mean age 32 years (37 

Male/16 Female) from the MIND Institute (New Mexico).  

Schizophrenia was chosen as a disorder as significant functional 

brain differences have been shown to exist 
[15]

.   

 

Data were motion-corrected, spatially smoothed with a 6mm full 

width at half-maximum Gaussian kernel, bandpass filtered (.008 to 

.1 Hz) and spatially normalized into the standard Montreal 

Neurological Atlas Space in preparation for probabilistic Independent 

Component Analysis, performed with MELODIC (Multivariate 

Exploratory Linear Decomposition into Independent Components) 

Version 3.10, part of FSL (FMRIB's Software Library) 
[19]

. 

   

2.2 INDEPENDENT COMPONENT ANALYSIS 

ICA is appropriate for task-free resting BOLD fMRI data because it 

does not require specification of a design matrix, as is required by 

the commonly used general linear model (GLM).  When applied to 

four dimensional fMRI data, the data is reshaped into an n x m 

matrix with n time-points and m voxels flattened into a row from a 

single 3D image.  The data is decomposed into two new matrices, 

the first including temporal information (time-course components) in 

columns, and the second including associated, statistically 

independent and sparse spatial components (whole brain maps) in 

rows.  Each row of this second matrix can be reassembled into a 3D 

image to visualize the map.  Each time-course in the first matrix 

represents a pattern of signal that the particular voxels contribute 

over the entire functional scan 
[14]

.  The decomposition is illustrated 

in Figure 1.  Abstractly, ICA expresses a mixed brain signal as a 

linear combination of statistically independent component variables.  

A fundamental assumption of this method is the independence of 

different brain signals, and that each component has a distinct 

spatial map that shares brain anatomy.  

 

 

 

 

 

 

 

 

 

FIGURE 1: An ICA decomposition of 4D fmri data produces a timecourse and spatial maps.  
 

Two levels of ICA were performed, first using the FastICA algorithm 
[11] 

to estimate a correct number of dimensions using the Laplace 

approximation to the Bayesian evidence of the model order 
[22][6]

, and 

second using the highest dimensionality possible given the data size 

(163 components).  FastICA is aimed at achieving maximum degree 

of non-Gaussianity for all estimated source signals.  There are many 

modifications of these algorithms 
[17][12]

 however FastICA is a solid, 

practical approach that is commonly used and a good choice for this 

analysis.  The resulting data set encompasses two sets of 

independent components derived on two levels from the equivalent 

53 datasets.  Components encompass real neurological signal, 

physiological signal, scanner noise, and artifact.   

 

Level 1 of Independent Component Analysis: The lower level 

decomposition that reveals “main” brain networks reflects a standard 

practice in the field, and is important for creating labels. Resulting 

components are interpretable by a human, and thus can be ascribed 

with meaningful labels to allow for the creation of a classifier.  This 

decomposition includes 1518 components (ranging from 10-48 per 

individual, with an average of approximately 25 per individual). 

 

Level 2 of Independent Component Analysis: For the higher level 

decomposition (representing more detailed signals, “sub-networks,”) 

encompasses 8739 components, expert annotation is infeasible if 

not impossible.  Therefore, it makes sense to build a model of noise 

using the level 1 of ICA, remove the noise from level 2 with this 

model, and then use unsupervised clustering to look for patterns in 

the filtered level 2 data. 

 

For both levels, each component is Z-transformed to allow for 

comparison by subtracting the mean and dividing by the standard 

distribution, resulting in voxel values that are Z-scores.  Each Z-

score map is then thresholded to include the .05 of values in the tails 

of the distribution.  This means that, for any two particular 

individuals’ networks, we are not comparing the values themselves, 

but rather, comparable degrees of activation from the individual-

specific means.  This is not problematic because spatial features 

account for the presence of any significant activation as opposed to 

the Z-score itself, and temporal features are concerned with the 

normalized distribution of values as well, and this practice is 

consistently done in the current literature.  
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2.3 STANDARDS FOR FUNCTIONAL NETWORKS AND NOISE 

The development of a simple Matlab tool allows for the annotation of 

components derived from ICA.  The tool (Figure 2) displays the 

spatial map, associated time course and its distribution for a set of 

selected components, and outputs a set of labels that works 

seamlessly with the next stage of analysis, the derivation of a 

component fingerprint (Section 2.4).  Using this tool, the entire set 

of 1518 components for 7 component types, 3 representing specific 

noise (head motion, white matter artifact and ventricles, eyeballs), 1 

representing all noise types, and  3 representing real functional 

networks (parieto-occipital cortex, primary visual cortex, ventral 

primary sensorimotor cortex), is manually annotated. 

 

 

 

 

 

 

 

 

FIGURE 2: Tool to annotate ICA components 

  

2.4 SPATIAL AND TEMPORAL FEATURES 

A total of 246 spatial and temporal features (available at: 

http://www.vbmis.com/bmi/class/cs229/features/nica_features.xlsx) 

and automatic extraction methods developed based on current 

literature and intuition were extracted from all components for both 

levels of decomposition 
[25][8][20]

.  

 

2.5 SUPERVISED METHODS TO DEFINE fMRI COMPONENTS 

A supervised method, least squares linear regression with the Least 

Absolute Shrinkage and Selection Operator (LASSO) 
[21]

, is utilized 

to perform both feature selection and classification of the 

components extracted with ICA using the manually curated labels 

that define a particular noise type.  This modification of least squares 

regression places a penalty on having more non-zero coefficients, 

and so it is good for finding sparse solutions.  The optimal parameter 

alpha that controls sparsity is chosen with a grid search, and the 

optimal lambda is equivalently determined by choosing the value 

that maximizes the cross validation accuracy.  This approach was 

chosen to identify features of different noise types with the 

hypothesis that each type can be defined by a small subset of the 

total features.  The chosen features from this step for each 

component type defined in the main network standard compose a 

“functional network fingerprint.”  A binary classifier was chosen 

because, while it might not be possible to ascribe a meaningful label 

to every single component, it is entirely feasible to pick out a single 

noise type or functional network. 

 

2.6 EVALUATION OF SELECTED FEATURES 

A ten-fold cross validated receiver operator characteristic (ROC) 

curve is built into the classification step to evaluate specificity and 

sensitivity, and a 1,000 iteration permutation test that attempts the 

equivalent model construction with a random permutation of the 

labels is used to assess the significance of the cross validated 

accuracy.  It should be noted that this approach is only used to 

evaluate the labels that comprise all noise types for which there is 

an equal proportion between the two classes (noise and real 

neurological signal).    

 

2.7 UNSUPERVISED METHODS TO EXPLORE SUBNETWORKS  

Each noise fingerprint will have its own model, or a set of weights 

applied to a particular set of features to output a class label.  The 

model created for the labels that include all noise types is used to 

filter level 2 sub-network data, and this filtered data can be explored 

with unsupervised methods.  It should be noted that the sheer 

number of these components and their “blob-like” nature makes 

evaluation of the filtered result infeasible, and so exploration of the 

clustering of disorder type is done knowing this limitation. 

 

From this filtered subset of sub-networks the goal would be to use 

unsupervised clustering to diagnose neuropsychiatric disorder.  

Intuitively, sub-networks that cluster together are not necessarily 

good for distinguishing schizophrenia from healthy control, and so 

the next goal is to find clusters of sub-networks that are most pure 

with regard to disorder type.  K-means clustering using Euclidian 

Distance is utilized to select clusters with 80% or greater 

membership of either schizophrenia patients or healthy control.  K-

means was performed across 49 values of K, ranging from 15 to 500 

with intervals of 10.  This threshold and the values of K were chosen 

arbitrarily.  This results in a filtered subset that includes sub-

networks that belong to clusters with the strongest class labels, as 

determined by K-means.   

 

K-Nearest Neighbor (KNN) unsupervised clustering is then 

employed for each sub-network to ascribe it with a likely diagnosis 

based on the diagnoses of the nearest neighbors (the percentage of 

K nearest neighbors that have the diagnosis).  Due to the previous 

step of selecting sub-networks with strong class membership, it was 

decided to set K=2 to reflect the two classes.  For K-Means, since 

the “correct” value of K is unknown, it was decided to try a method 

that mimics an ensemble approach, and combine score vectors for 

the same individual across values of K.  This is done with the idea 

that if a sub-network is particularly good for distinguishing 

schizophrenia from healthy control, it might appear as a “pure” 

cluster across multiple values of K, and using its multiple repetitions 

is akin to weighting it more highly in the final diagnosis. 

 

This final diagnosis score, a value between 0 and 1 that represents 

the probability of having schizophrenia, is computed for each 

schizophrenia patient or healthy control based on the average of 

these scores, with a value of 0 representing a healthy control, and a 

value of 1 representing a pure schizophrenia patient.   The threshold 

to distinguish the two classes was decided as the mean of the 

distribution of total scores. 

3 RESULTS 

3.1 NOISE AND FUNCTIONAL FINGERPRINTS 

Subsets of spatial and temporal features were identified to 

distinguish comprehensive noise, eyeballs, head motion, white 

matter artifact and ventricles, parieto-occipital cortex, primary visual 

cortex, and ventral primary sensorimotor cortex, with best cross 

validation accuracies for the first five of .8689, .9834, .9808, .9675, 

and .9695, respectively.  The area under the curve for the set of 

labels used to filter sub-networks was .9286. Complete results, 

including component fingerprints, selected features, and 
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“fingerprints” for the successful models are displayed in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
FIGURE 3: Component types, spatial maps, network counts, cross validation accuracy, 
ROC curve, fingerprints, and top 10 (or fewer) selected features for level 1 ICA 
components. These models demonstrate the computation signature of fMRI components. 

 

3.2 SUPERVISED METHODS TO DEFINE fMRI COMPONENTS 

Filtering the original 8739 components derived with higher 

dimensionality ICA (the “sub-network” level) with the comprehensive 

noise classifier resulted in a subset of 3184 components 

representing real neurological signal.  Cluster goodness to 

potentially choose a particular value of K was evaluated based on 

mean centroid distance, and lack of a clear “best” choice further 

supported the decision to combine across values of K.  The final 

calculation of accuracy for this exploratory method with k=2 was 

0.5714.  Adjusting the threshold of decision to slightly greater than 

the mean, accuracy improved up to 0.6122.   

 

Evaluation of Pure Clusters Reveals Novel Noise Type: Across 

49 values of K there were 1,838 pure clusters comprised of at least 

80% of one class.  A random sample of 75 of these pure clusters 

was visually evaluated, and surprisingly, a novel type of noise 

emerged in many of the samples (Figure 4).  Further exploration of 

entire sets of clusters for a particular value of K made it apparent 

that this noise appeared consistently across values of K and cluster 

membership was predominantly schizophrenia patients.  
 

    Evaluation of Pure Clusters Reveals   

      Anti-Hubs: A quick glance at a set of sub-  

     networks derived with the higher level  

     decomposition  and reading current literature  

     
[7]

 leads one to believe that the    

     majority of components representing real  

     neurological signal are pieces of broken  

     apart “whole” functional networks that might  

     be seen at a lower level decomposition.  The  

     visual evaluation revealed clusters of one  

functional network type that, also surprisingly, did not look broken 

apart at all.  This would suggest that the linear relationship between 

the voxels in this component is so strong that even forcing the 

derivation of more components does not split the group into two.  

Biologically, this reflects an insular, strongly connected functional 

network, or an “anti-hub.”  This is an interesting finding that deserves 

further investigatation, because it might be the case that the degree 

to which a network can be broken apart is a salient feature to 

distinguish disorder from healthy control.   

4. DISCUSSION 

It has been demonstrated that independent component analysis can 

be used to extract a mix of functional brain networks and noise, and 

that spatial and temporal features can automatically distinguish 

network types to allow for automated filtering of fMRI data.  Further, 

this paper provides rationale that interesting, disorder-specific 

patterns exist on the level of sub-networks, and more work is 

needed to characterize these differences.  Additionally, it was not 

checked (beyond counting the number of components of each type) 

that each individual contributed exactly one network.  The counts 

(“N” in Figure 3) suggest that this might be the case, but what is 

needed is a counting of how many times we see a particular 

network.  These frequency counts would allow for more probabilistic 

approaches applied to classifying the data.   

 

This ability to automatically ascribe labels to functional networks and 

noise breaks down the barrier to pursuing data-drive methods for the 

diagnosis of neuropsychiatric disorder.  This type of work is starting 

to be done with moderate success with structural data for which the 

standard is simply a standard brain anatomical template. 
[4]

.   

 

4.1 SELECTED FEATURES AS VALIDATION 

The selected spatial and temporal features serve as unofficial 

validation of the component.  For example, it is expected to see 

“percent activation in eyeballs” as the mostly highly weighted feature 

for the eyeballs component, “percent total activation in ventricles” as 

the top feature for the ventricles component, and “percent activation 

skull” for the head motion component.  From a biological standpoint, 

these selected features make sense.  An interesting observation that 

has been shown in the literature is the fact that noisy components 

tend to be defined more-so by time-course features, while functional 

networks show selection of predominantly spatial features.  

Additionally, successful models were built for all 4 noise types, while 

only one of the three functional networks resulted in a successful 

model.  It could be the case that this observation is just chance 

based on the standards that were created, or it could be the case 

that the features are not good enough to distinguish the networks.  It 

is salient that the features were developed with the intent of 

classifying artifact and noise, and so further work is needed to both 

create more functional standards for testing and developing features 

that might better classify the networks once noise is removed. 

  

4.2 NEXT STEPS FOR SUBNETWORK EXPLORATION 

The unsupervised methods applied to the filtered sub-network data 

provide impetus for further work in this problem space.  The 

clustering and scoring methods utilized were by no means 

complicated, and so an accuracy of 0.6122 is surprisingly high given 

this simplicity.  

Percent total activation in CSF 
Percent total activation MNI152 edges 
kurtosis measure outlier-prone ts 
Caudate R     
Percent total activation skull 
Caudate L 
Percent activation in eyeballs 
Paracentral Lobule L 
Spatial Entropy of IC distribution 
Percent total activation spinal cord 

Percent activation in eyeballs 
Spatial Entropy of IC distribution 
Avg distance btw 10 local max 
Skewness of IC distribution  
% activation voxels LR symmetric 
Rectus L 
Olfactory R 
Percent total activation in WM 

Perfect total activation in GM 

Percent total activation skull     
% activation voxels LR symmetric 
Power band 0.0 to 0.008 Hz  
% total activation MNI152 all edges 
Avg distance btw 10  local max 
Hpsd bin 2 freq0 to pi 0.038312 
Percent total activation in CSF 
Four lag auto correlation 
Hpsd bin 3 freq0 to pi 0.076624 

three lag auto correlation 

Percent total activation ventricles 
Percent total activation in WM 
Caudate R 
Cingulum Post R 
Caudate L 
Thalamus L, Thalamus R 
Max cluster size 10 local max 
region  
growing thresh 2.5 < .5 overlap 
power band 0.05 to 0.1 Hz 
Cingulum Post L 

Occipital Sup R 
Occipital Mid R 
Parietal Sup L 
Percentage activation voxels LR 
symmetric 
Occipital Mid L 
Occipital Sup L 
Parietal Inf L 
Parietal Sup R 
Occipital Inf L 
Parietal Inf R 

Figure 4: Novel type of 
noise revealed by K-means 
clustering of filtered sub-
networks 
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The discovery of a visually identifiable novel type of noise on the 

level of the sub-networks that was not seen on the level of the main 

networks speaks to the fact that the higher dimensionality ICA 

extracts more “detailed” independent signals that would be mixed 

with a stronger trend in the data at a lower level decomposition.  

This finding also provide rational that higher dimensionality ICA is 

more promising to find subtle group differences.  The challenge 

remains, however, that manual annotation of these networks is 

infeasible.  Although the task is daunting, developing features 

characteristic of sub-networks would assist in better clustering the 

networks to identify group differences. 

 

Unsupervised Methods Need More Data:  It was decided to derive 

diagnosis scores by combining across values of K in order to make 

up for not having enough data at any one value of K. Thus, it is clear 

that more data is needed. 

 

4.3 LIMITATIONS OF STANDARDS 

With the constraints that are currently set in the neuroscience 

community for what encompasses a gold standard, (i.e. a labeling 

done by many experts), it would be incredibly challenging and time 

consuming to entice even one expert to label a set of 1518 networks 

multiple times.  This work was done under the guise that a careful 

annotation of one experienced individual would be superior to some 

effort using Amazon Mechanical Turk, or attempting to convince a 

set of experts to look at small subsets of the data.  The standards 

used for this work in no way represent robust, widely accepted 

standards; however the point is to show that groups of components 

intelligently identified by a human being to belong to a particular 

group in fact can be computationally defined.  To pursue this type of 

work the rules must be changed to allow for imperfection.  The 

neuroscience community must acknowledge that when working with 

large data, the standard might not be perfect, but the large data will 

still allow for discovery. 

5. CONCLUSION 

The definition of standards and features that define different types of 

noise and functional networks is a move toward the goal of 

understanding the function of the human brain, and how this function 

can be aberrant across disorders.  On a simple level, machine 

learning allows us to use our human expertise to teach a computer 

what encompasses a brain network.  We can provide labels for the 

components that we do understand, and the resulting models can 

provide further insight to the components that we do not understand. 

As we develop functional “biomarkers” of disorder, we can further 

integrate genetic data (currently being developed by the Allen Brain 

Atlas), structural data, and go as far as making connections between 

patterns of brain function and emerging trends such as the micro-

biome to answer the question of how our brain function relates to 

who we are.  On a speculative and exciting level, logical takeaways 

from this work include the following: 

 

1. Need for the development of sub-network-specific 

features 

2. Determine frequency of each network type for different 

disorders (priors) to allow for probabilistic modeling 

3. Understanding of which functional networks do not “break 

apart” between different levels of decomposition, and 

perhaps how the degree to which they break apart might 

differ between disorders.  

4. Guided ICA (a “with reference approach”) to bias the 

decomposition to add an additional constraint that 

incorporates prior information when updating the weights 
[15]

. 

  

This is a prime time to be in neuroscience.  We are not so far away 

from finding a meaningful difference in structure or function of the 

human brain for a particular disorder, and then querying the 

individuals’ genome for genes expressed in that region, and then go 

into the blueprint of the entire machine and making a system-wide 

fix to actually "cure" or help some of these disorders. 
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