
Forecasting Trade Direction and Size of Future Contracts Using Deep
Belief Network

Anthony Lai (aslai), MK Li (lilemon), Foon Wang Pong (ppong)

Abstract

Algorithmic trading, high frequency trading (HFT) in particular, has drawn a lot of interests within the computer
science community. Market making is one of the most common type of high frequency trading strategies.
Market making strategies provide liquidity to financial markets, and in return, profit by capturing the bid-ask
spread. The profitability of a market making strategy is dependent on its ability to adapt to demand fluctuations
of the underlying asset. In this paper, we attempt to use deep belief network to forecast trade direction and size
of future contracts. The ability to predict trade direction and size enables automated market maker to manage
inventories more intelligently.

Introduction

Market making in a nutshell
According to Garman (1976), buyers and sellers arrive randomly according to a poisson process. [1] Assume that
Alice wants to buy 100 shares of Google. There might not be someone who wants to sell 100 shares of Google
right now. Market maker plays the role of an intermediary, quoting at the bid and ask price simultaneously.
When a buyer or seller wants to make a trade, the market maker act as a counterparty, taking the other side of
the trade. In return, the market maker profit from the bid-ask spread for providing liquidity to the market.

Figure 1. Illustration of Center Limit Order Book Figure 2. Bid Ask Price and Arrival Rates of Buyers
and Sellers.

Automated market making strategy
An automated market maker is connected to an exchange; usually via the FIX protocol. The algorithm
strategically places limit orders in the order book and constantly readjust the open orders based on market
conditions and its inventory. As we have mentioned earlier, the market maker profits from the bid-ask spread.
Let us formalize the average profit of a market maker over time. Let λBuy(Ask) and λSell(Bid) be the arrival rate of
the buyer and seller at the ask and bid price respectively. In the ideal world, λBuy(Ask) is equal to λSell(Bid) and the
average profit is given as:

However, in practice, this is rarely the case: buyers and sellers arrive randomly. Figure 2 illustrates how λBuy(Ask)
and λSell(Bid) is related to the bid and ask prices. In theory, assuming that there is only one market maker, he could
control λBuy(Ask) and λSell(Bid) by adjusting the bid and ask prices. In practice, market maker could also adapt by
strategically adjust their open orders in the order book. The ability to accurately predict the future directions and

quantities of trades allow market maker to properly gauge the supply and demand in the marketplace and
thereby to modify their open orders.
Deep Belief Network (DBN)

Figure 3. Structure of our deep belief network.
Consists of an input layer, 3 hidden layers of RBM and
an output layer of RBM.

Figure 4. Diagram of a restricted Boltzmann machine.

Deep belief network is a probabilistic generative model proposed by Hinton [2]. It consists of an input layer, an
output layer, and is composed of multiple layers of hidden variables stacked on top of each other. Using
multiple hidden layers allows the network to learn higher order features. Hinton has developed an efficient,
greedy layer-by-layer approach for learning the network weights. Each layer consists of a Restricted Boltzmann
Machine (RBM). The deep belief network is trained in two steps, namely, the unsupervised pre-training and the
supervised fine tuning.

Unsupervised pre-training
Traditionally, deep architectures is difficult to train because of their non-convex objective function. As a result,
the parameters tend to converge at local optima. Performing unsupervised pre-training helps initialize the
weights to better values and helps us find better local optima. [4] Unsupervised pre-training is performed by
having each hidden layer greedily learns the identity function one at a time, using the output of the previous layer
as the input.

Supervised fine tuning
Supervised fine tuning is performed after the unsupervised pre-training. The network is initialized using the
weights from the pre-training. By performing unsupervised pre-training, we are able to find better local optima
in the fine tuning phase than using randomly initialized weights.

Restricted Boltzmann Machine
Restricted Boltzmann Machines (RBMs) consist of visible and hidden units that form a bipartite graph (Figure 3).
The visible and hidden units are conditionally independent given the other layer. The RBMs are then trained by
maximizing the likelihood given by the following equation (Figure 5). RBM is trained using a method called
contrastive divergence that is developed by Hinton. Further information can be found in Hinton’s paper. [3]

Figure 5. Log likelihood of the restricted Boltzmann machine. In this case, x(i) refers to the visible units.

Dataset

To ensure the relevancy of our results, we acquired tick-by-tick data of S&P equity index Futures (ES) from the

Chicago Mercantile Exchange (CME). Tick-by-tick data includes all trade and order book events occurred at the
exchange. It contains significantly more information than the typical information obtained from Google or
Yahoo finance - which are summary of the tick-by-tick data. The data we obtained from CME is encoded in FIX
format (Figure 5). We implemented a parser to reconstruct trade messages and order book data.

1128=9|9=361|35=X|49=CME|34=2279356|52=20120917185520880|75=20120917|268=3|279=1|22=8|48=10113|83=2476017|107=ES
Z2|269=0|270=145200|271=1607|273=185520000|336=2|346=240|1023=6|279=1|22=8|48=10113|83=2476018|107=ESZ2|269=0|270=
145325|271=421|273=185520000|336=2|346=95|1023=1|279=1|22=8|48=10113|83=2476019|107=ESZ2|269=0|270=145325|271=416|
273=185520000|336=2|346=94|1023=1|10=141|

Figure 6. A single FIX message encoding an incremental market data update message.

Normalization and data embedding
Our input vector is detailed in Figure 7. Prices and time values are first converted to relative values by
subtracting the values of the trade_price and trade_time at t=0 respectively. For instance, if the trade price at
t=0 and t=-9 are 12,575 and 12,550 respectively, then trade_price0 = 0 and trade_price9 = -25.

The neural network requires input to be in the range [0, 1]. We have therefore created an embedding by
converting numerical values into binary form. For example, the final result for trade size would look as follows:
Trade size=500 → round(log2(500)) = 8 → [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]. After these data transformations, our input
features becomes a 700x1 feature vector.

Figure 7. Illustration of an Input vector.

Results

Baseline Approaches
For the purpose of this project, we evaluated several machine learning algorithms, in particular, logistic
regression and support vector machines. Logistic regression was a natural choice because we wanted to make
binary predictions about the directions of future trades. We also attempted to use SVM for both the trade
direction and quantity prediction tasks. We did some field trials comparing the various learning algorithms. DBN
was the most accurate out of the three, and therefore we decided to focus on DBN for the purpose of this
project.

DBN
The structure of our deep belief network is shown in Figure 3. There are a total of 3 hidden layers, each with 100
nodes. This is the best configuration out of various other configurations of network topologies we explored.

Trade Direction Prediction
We want to predict the next 10 trades given the previous 10 trades. For this task, we trained 10 DBNs: the ith

DBN is trained to predict the direction of the trade at ti. The results are shown in Figure 8. For comparison, we

used 2 different sets of input: one using only information from the past 10 trades and another using both trade
and order book information.

Figure 7. Accuracies of predicting trade direction. The predictions in the first row only uses trade information.
The predictions in the second row uses both trade and top of the book information (namely the bid price, bid

size, ask price, ask size).

Trade Quantity Prediction
Similar to the previous prediction task, we trained 10 DBNs to predict the sizes of the next 10 trades. Our earlier
attempt uses a logistic regression in the output layer to predict a normalized value between [0, 1]. The prediction
range is very narrow, between 0.2 and 0.3. We attribute this to the steepness of the sigmoid function. Posing this
as a classification problem would perhaps be more appropriate. We therefore transformed the trade quantity
into 10 discrete bins. The distribution of the trade quantity is extremely skewed as shown in Figure 8. As a
preprocessing step, we log normalized the trade quantity, reducing the kurtosis from 80.52 to 2.9. Doing so
created 10 discrete bins, each corresponded to a power of 2. Results are shown in Figure 10.

Figure 8. Histogram of trade quantities. Figure 9. Histogram of log normalized trade
quantities.

Figure 10. RMSE of predicting trade quantities. The predictions in the first row only uses trade information. The
predictions in the second row uses both trade and top of the book information (namely the bid price, bid size,

ask price, ask size).

Error Analysis

Trade direction error analysis
Given the past 10 trades, our model yields an accuracy of over 60%. It appears that additional information, such
as the order book data, did not improve the result. Although the unprocessed order book data does not seems
very predictive, it could potentially be useful if we manually engineer features that is not currently captured by
the DBN.

We are interested to understand why trade direction can be predicted. The graph of trade directions are shown

in figure 11. By inspection, we discovered that the trades tend to be of consecutive buys and sells, which explains
it far from random and allow our algorithm to perform some predictions.

Figure 11. Time series of trade directions. Buy and sell orders are shown at the top and bottom
respectively.

Trade quantity error analysis
From the result above, we can see that the prediction for the trade quantities are fairly inconsistent. It is unclear
if there exists any correlations between our input data and the trade quantities. Perhaps, we may need
additional information, other than the last 10 trades, to improve the prediction. We also tried to gain additional
insights about the DBN by visualizing its weights, but it turned out not to be too informative either.

The RMSE of the results are on average over 2 bins different from the actual labels. When we look at the output
of the DBN, it predicts the majority class most of the time - in this case it is bin 0. We attribute this to the
skewness of the class labels. One way to deal with skewed class distribution is to resample from the underlying
dataset to obtain a more evenly distributed set of training examples.

There are potentially multiple factors contributing to such unpredictability. First, when trading large quantities,
hedge funds and institutional traders use several ways to minimize market impact. The simplest way is to divide
large trades into smaller trades. More complex approaches involve further obscuring the trading patterns by
introducing noise using multiple buying and selling transactions. [5] Moreover, other market makers may use
similar algorithms to predict the demand and supply. As a result, any arbitrage opportunities would disappear
quickly, leading to mixed signals mingled with each other.

Perhaps, the more interesting problem is the prediction of outliers -- trades with large quantities. The ability to
predict these outliers is more important as these outliers would cause the market maker to over-buy or over-sell
the asset, leading to increased risks and unbalance inventories.

Future Work
We would like to investigate further using other complementary tools and information and see if we can see
improveme our current results. One possibility is to include data from highly correlated financial product such as
Nasdaq futures market(NQ) as additional features. The rationale behind this is similar to pairs trading. If a large
quantity is traded in Nasdaq, it might inform us about trades related to ES (S&P) futures. Another possibility is to
include other handcrafted statistical information such as moving averages as input features. There could be
information not captured by the fundamental trade information that can help achieve better predictions. It may
also be useful to create an automated process to experiment more comprehensively with our DBNs using
different hyper parameters, such as the number of hidden layers, the dimension of different hidden layers,
number of training iterations, learning rate and etc. Although we have done various tests and decide to settle on
our current configurations, it would be beneficial if we could further fine tune our hyper parameters.

[1]Joel Hasbrouck. Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities
Trading.
[2] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation,
vol. 18, no. 7, pp. 1527–1554, 2006
[3] Geoffrey Hinton (2002). Training products of experts by minimizing contrastive divergence. Neural
Computation 14:1771–1800.
[4] http://ufldl.stanford.edu/wiki/index.php/Deep_Networks:_Overview
[5] http://en.wikipedia.org/wiki/Algorithmic_trading

