
Learning to Play 2D Video Games

Justin Johnson
jcjohns@stanford.edu

Mike Roberts
mlrobert@stanford.edu

Matt Fisher∗

mdfisher@stanford.edu

Abstract

Our goal in this project is to implement a machine learn-
ing system which learns to play simple 2D video games.
More specifically, we focus on the problem of building a
system that is capable of learning to play a variety of dif-
ferent games well, rather than trying to build a system that
can play a single game perfectly.

We begin by encoding individual video frames using fea-
tures that capture the absolute and relative positions be-
tween visible objects. This feature transform: (1) general-
izes across a wide class of 2D games; and (2) produces very
sparse feature vectors, which we exploit to drastically re-
duce computation times. To learn an appropriate gameplay
policy, we experiment with model-based and model-free re-
inforcement learning methods. We find that the SARSA(λ)
algorithm for model-free reinforcement learning success-
fully learns to play PONG, FROGGER, DANCE-DANCE-
REVOLUTION, as well as several other games of compa-
rable complexity.

1. Introduction
AI systems are capable of playing specific video games,

such as Super Mario World [4] and Starcraft [7], with com-
parable skill to expert human players. However, all such AI
systems rely on a human to somehow perform the challeng-
ing and tedious task of specifying the game rules, objectives
and entities.

For example, state-of-the-art AI systems for playing
Mario and Starcraft can play these games effectively, even
when faced with challenging and complex game states.
However, these systems rely heavily on hand-crafted heuris-
tics and search algorithms that are specific to the game they
target, and are not readily generalizable to other games.

In contrast, systems for General Game Playing (GGP)
[3], such as CadiaPlayer [2], can play novel games for
which they were not specifically designed. However, GGP
systems rely on a human to provide a complete formal spec-

∗Mike and Justin are enrolled in CS 229, but Matt is not. Matt is a
senior PhD student in the Stanford Graphics Group, who will has advised
and collaborated with Mike and Justin on this project. He wrote the game
model learning algorithm mentioned in Section 4.

Figure 1. Our system successfully learns to play the games
shown above: EAT-THE-FRUIT (top-left), PONG (top-middle),
DANCE-DANCE-REVOLUTION (top-right), FROGGER (bottom-
left), SNAKE (bottom-middle), DODGE-THE-MISSILE (bottom-
right).

ification of the game rules, objectives, and entities in a log-
ical programming language similar to Prolog. Arriving at
such a formal specification is very tedious even for the sim-
plest games. This limitation significantly constrains the ap-
plicability of GGP systems.

Very recently, Bellemare et al. [1] released the Arcade
Learning Environment for evaluating the performance of AI
agents on a large set of Atari 2600 games. In this work,
Bellemare et al. evaluate a variety of feature transforms
that generalize across 2D games, as well as evaluating the
SARSA(λ) algorithm for online model-free reinforcement
learning in this setting. Bellemare et al. demonstrate that
the SARSA(λ) achieves reasonable performance on a large
variety of games.

In this project, we aim for comparable performance and
generality to that recently demonstrated by Bellemare et
al. [1]. Indeed, our technical approach is directly inspired
by their work. To our knowledge, the Arcade Learning
Environment is the only system to implement AI agents
that learn to play such a wide variety of non-trivial games.
Therefore, it is worth emphasizing that the games we con-
sider in this project are at the approximate boundary of what
general AI agents are capable of learning. This is true de-
spite the apparent simplicity of our games, even compared
to classic 2D games like Super Mario World.

2. Games
To evaluate our system we implemented a number of

games of complexity comparable to early arcade games.
Each game contains a number of distinct object types, and
game state consists of a fixed configuration of objects. The
state space S of a game is the set of all possible object
configurations. Unless otherwise noted, the action space
of each game is A = {L,R,U,D, ∅}, and consists of one
action corresponding to each of the four cardinal directions
and the do-nothing action ∅.

Each game is played over a series of episodes, where
an episode consists of many frames. To prevent a per-
fect player from playing indefinitely, we cap episode length
where appropriate. In all situations, early termination of an
episode due to capping earns the player zero reward in the
final frame of the episode.

GRID-WORLD. In this game, the player controls a char-
acter on a 5 × 5 grid. During each frame of the game, the
player may move in any direction or remain stationary. The
player begins each episode in the lower left corner of the
grid and must reach the upper right corner. When this goal
is achieved, the player receives a positive reward and the
episode ends. In addition, the player receives a negative re-
ward for stepping on the central square. We evaluate the
player’s performance by counting the number of frames per
episode. Fewer frames per episode indicates better perfor-
mance, since it means that the player navigated to the goal
square more quickly.

EAT-THE-FRUIT. Similar to GRIDWORLD, the player
controls a character on a fixed sized grid. At the start of each
episode, an apple appears on a randomly chosen square.
The player begins in the lower left corner of the grid and
must move to the apple. After eating the apple, the player
receives a reward and the episode ends. As in GRIDWORLD,
we measure a player’s performance on this game by count-
ing the number of frames per episode.

DODGE-THE-MISSILE. In this game the player controls
a space ship which can move left or right across the bottom
of the screen, so the action set is A = {L,R, ∅}. Missiles
and powerups spawn at the top of the screen and fall toward
the player. The player receives a positive reward for col-
lecting powerups; being hit by a missile incurs a negative
reward and causes the episode to end. We cap the episode
length at 5000 frames. We evaluate the player’s perfor-
mance by counting both the number of frames per episode
and the number of powerups collected per episode. Larger
numbers for each metric indicate better performance.

FROGGER. In this game, the player controls a frog which
can move in any direction or remain stationary. The player
begins each episode at the bottom of the screen and must
guide the frog to the top of the screen. This goal is made

Figure 2. Our tile-coded feature representation. We encode the ab-
solute positions of game objects (top) as well as relative positions
of game objects (bottom) in spatial bins. Relative positions are
computed separately for all pairs of object types. For any game
state s ∈ S, this results in a feature vector ϕ(s) of dimension d =
O(k2) where k is the number of distinct object types in the game.
To be used in the SARSA learning algorithm, the feature transform
must also encode the action ai ∈ A = {a0, . . . , a|A|−1} that is
to be taken from the current game state s. To this end, our final
feature vector ϕ(s, ai) is simply the vector ϕ(s) with all indices
shifted by i|A| and with zeros at all other positions.

more challenging by cars that move horizontally across the
screen. The episode ends when the frog either reaches the
top of the screen or is hit by a car. The former earns a re-
ward of r1 > 0 and the latter receives a reward of r2 < 0.
We evaluate the player’s performance by computing her av-
erage reward per episode.

PONG. In this game, two paddles move up and down
across the left and right sides of the screen while volley-
ing a ball back and forth. The player controls the left pad-
dle, whereas the game controls the right paddle. The action
space is A = {U,D, ∅}. Failing to bounce the ball yields a
negative reward and ends the episode. We cap the episode
length at 50 successful bounces. We evaluate the player’s
performance by counting the number of successful bounces
per episode.

SNAKE. In this game, the player controls a snake of
fixed length that moves around a maze. With no player in-

put, the snake moves forward at a constant rate; pressing
a direction key changes the direction that the snake trav-
els. The episode ends with a negative reward if the snake
head intersects either a wall or the snake body. We cap the
epsiode length at 180 frames. We evaluate the player’s per-
formance by counting the number of frames that it survives
per episode.

DANCE-DANCE-REVOLUTION. In this game, arrows
appear at the bottom of the screen and scroll toward tar-
gets at the top of the screen. Whenever an arrow overlaps
its corresponding target, the player must press the direction
key corresponding to the direction of the arrow. The trivial
strategy of pressing every arrow at every frame is impos-
sible, since the player can press at most one direction per
frame. Each episode lasts for 1000 frames, and a player’s
performance is measured by the fraction of arrows that it
successfully hits.

3. Feature Design

Since we want our learning system to generalize across
games, we must avoid including any game-specific state in
our features. For example, explicitly encoding the position
of Mario, along with the positions of game entities that we
know can harm Mario, into our features would run counter
to our goal of generality. However, we must encode the ob-
servable game state with sufficient fidelity to make accurate
predictions. On the other hand, we must carefully design
features of sufficiently low dimensionality that our learning
problems remain computationally tractable.

With these competing concerns in mind, we follow the
approach of Bellemare et al. [1] and encode the game state
using tile-coded features. This encoding allows us to effi-
ciently encode the absolute and relative positions of objects
within the game. See Figure 2 for details.

Although the resulting feature vector is very high dimen-
sional (over 100,000 for several games), it is very sparse
(see Figure 3). Storing the feature vector sparsely allows
our algorithm to remain computationally efficient despite
the high dimensionality of our feature transform.

4. Model-Based Reinforcement Learning

To learn an appropriate gameplay policy, we began with
the following observation. Although the state spaces of
the games we consider are very large, the action spaces of
the games we consider are very small. For example, there
are roughly 1032×32 different possible states in SNAKE, but
only 5 actions. This observation motivated us to learn game-
play policies by performing fitted value iteration.

Since fitted value iteration requires access to a game
model, we learned one from recorded examples of game-
play. More specifically, we formulated the program of

Algorithm 1 Learn to play a game using the SARSA(λ) al-
gorithm with linear function approximation. See Section 5
for definitions of the variables.

function LEARN-GAME()
τ ← 0, w ← 0
s← Initial state, a← Initial action
ϵ← ϵ0 // Initial exploration rate
repeat

Take action a, observe next state s′ and reward r
s′ ← CHOOSE-ACTION(s, ϵ)
δ ← r + γwTϕ(s′, a′)− wTϕ(s, a)
τ ← λτ
for ϕi(s, a) ̸= 0 do

τi = 1

w ← w + wαδτ // Update weight vector
ϵ← ϵdϵ // Decay exploration rate

until termination

learning a game model as a supervised learning problem,
which we addressed by training a collection of decision
trees. Very roughly speaking, our input features encoded
the current observable game state at time t, as well as the
input provided by the player at time t. Our target variables
encoded the game state at time t + 1. We then learned a
game model by training a collection of decision trees. See
our midterm progress report for details.

Using our learned game model, as well as the feature
transform ϕ described in Section 3, we were equipped to
apply fitted value iteration to learn a gameplay policy. At
its core, fitted value iteration approximates the value func-
tion as V (s) ≈ θTϕ(s). The weight vector θ is found
by solving a linear regression problem with design matrix
Φ(s⃗) = (ϕ(s1), . . . , ϕ(sm))T where s⃗ = (s1, . . . , sm) is
a vector of states. Unfortunately, we observed severe nu-
meric instability using this approach for games as simple
as GRID-WORLD. We speculate that this instability stems
from a severe rank-deficiency of the feature matrix Φ(s⃗).

In the case of GRID-WORLD, the rank-deficiency of
Φ(s⃗) occurs because there are a total of 25 unique states, as-
suming a 5×5 game area. Therefore, Φ(s⃗) can have at most
25 unique rows no matter the dimension of s⃗, so Φ(s⃗) has
rank ≤ 25. However, using the feature transform described
in Section 3, Φ(s⃗) will much greater than 25 columns. The
linear regression problem is therefore underconstrained and
has an infinite number of solutions. We considered tak-
ing the minimum-norm solution, but it is not clear that this
approach would sensibly approximate our unknown value
function.

To make matters worse, this numeric instability becomes
more pronounced for more complex games. The dimen-
sion of the feature transform ϕ(s) (and hence the number
of columns of Φ(s⃗)) grows quadratically with a large con-

0 1 2 3 4 5 6 7 8

Dense Traces, Dense Features

Dense Traces, Sparse Features

Sparse Traces, Dense Features

Sparse Traces, Sparse Features
DODGE-THE-MISSILE Cumulative Computation Time (Seconds)

0 20 40 60 80 100 120 140
Dense

Sparse
DODGE-THE-MISSILE Average Number of Features (Thousands)

Figure 3. Top: Comparison of total computation time for learn-
ing DODGE-THE-MISSILE using different combinations of sparse
and dense feature and trace vectors. Bottom: The average number
of nonzero features for DODGE-THE-MISSILE. We observe that
the average number of nonzero features is very small, which we
exploit to drastically reduce computation times.

0 20 40 60 80 100
Episode

0

100

200

300

400

500

GRID-WORLD Frames to Find Goal Per Episode (3 episode moving average)

λ = 0.0
λ = 0.1
λ = 0.5
λ = 0.9
Random Movement

Figure 4. The effect of different values for λ. on the convergence
of our algorithm when playing GRID-WORLD. We show conver-
gence rates for various values of λ relative to random movement.
Lower is better. We observe that our algorithm outperforms ran-
dom play across a wide range of values for λ.

stant as the number of unique object types increases. Even
if this is smaller than the number of sensible game states,
a numerically stable regression step would require a large
number of training samples, which could quickly become
computationally infeasible.

The numerical stability problems associated with fitted
value iteration prompted us to markedly reconsider our
technical approach. This lead us to the model-free rein-
forcement learning algorithm we describe in the following
section.

5. Model-Free Reinforcement Learning
Our system uses the SARSA(λ) algorithm with linear

function approximation (see Algorithm 1) to learn a game-
lay policy. SARSA [5] is an online model-free algorithm
for reinforcement learning. The algorithm iteratively com-

putes a state-action value function Q : S × A → R
based on the rewards received in the two most recently ob-
served states. SARSA(λ) [6] is a variant that updates the
state-action value function based on the rewards received
over a large window of recently observed states. In our
case, the full state space S of an unknown game may be
very large, so we approximate the state-value function as
Q(s, a) = wTϕ(s, a), where ϕ : S×A→ Rn is the feature
transform described in Section 3 and w ∈ Rn is a weight
vector.

At each game state s, the algorithm chooses an action
a using an ϵ-greedy policy: with probability ϵ the action is
chosen randomly, and with probability 1 − ϵ the action is
chosen to satisfy a = argmaxa∈A Q(s, a). The parameter
ϵ ∈ [0, 1] controls the relative importance of exploration
and exploitation, and as such is known as the exploration
rate. In our implementation we decay ϵ exponentially over
time. This encourages exploration near the beginning of
the learning process, and exploitation near the end of the
learning process.

The algorithm keeps track of recently seen states using
a trace vector τ ∈ Rn. More specifically, τ records the
recency with which each feature has been observed to be
nonzero. The sparsity of typical feature vectors causes τ to
be sparse as well. This sparsity can be exploited for com-
putational efficiency (see Figure 3).

We update the trace vector using a parameter λ ∈ [0, 1],
which controls the extent to which recently seen features
contribute to state-value function updates. Varying the
value of λ can affect the rate at which the learning algo-
rithm converges (see Figure 4). Admittedly, we found that
different values of λ were required for each game in or-
der to achieve the best possible performance. For example,
we used λ = 0.3 for DANCE-DANCE-REVOLUTION and
λ = 0.8 for DODGE-THE-MISSILE.

The algorithm also depends on a learning rate α ∈ [0, 1],
which has similar meaning to the learning rate in gradient
descent. We found that α required tuning for each game.
For example, FROGGER performed best with α = 0.01,
whereas SNAKE performed best with α = 0.00001.

6. Results

Our system successfully learns to play GRID-WORLD,
EAT-THE-FRUIT, DODGE-THE-MISSILE, FROGGER,
PONG, and DANCE-DANCE-REVOLUTION. We evaluate
the performance of our system on these games by com-
paring with game agents that choose random actions at
every frame to show that substantial learning takes place
(see Figures 4 and 5). Our system learns to play SNAKE
successfully only when we simplify the game by reducing
the length of the snake body to 1 (see Figure 6).

0 200 400 600 800 1000
Episode

−100

−50

0

50

100

150

200

250

300

EAT-THE-FRUIT Frames to Find Goal Per Episode (20 episode moving average)

Our Method Random Movement

0 20 40 60 80 100
Episode

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

DANCE-DANCE-REVOLUTION Fraction of Hits Per Episode

Our Method Random Guesses

0 100 200 300 400 500
Episode

−1000

0

1000

2000

3000

4000

5000

DODGE-THE-MISSILE Frames Survived Per Episode (3 episode moving average)

Our Method Random Movement

0 100 200 300 400 500
Episode

−5

0

5

10

15

20

25

30

DODGE-THE-MISSILE Powerups Obtained Per Episode (3 episode moving average)

Our Method Random Movement

0 500 1000 1500 2000 2500
Episode

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

FROGGER Reward Per Episode (50 episode moving average)

Our Method Always Move Up Random Movement

0 50 100 150 200 250 300
Episode

−10

0

10

20

30

40

50

PONG Bounces Per Episode (3 episode moving average)

Our Method Random Movement

Figure 5. Performance of our algorithm relative to random play for EAT-THE-FRUIT (top-left, lower is better), DANCE-DANCE-
REVOLUTION (top-middle), DODGE-THE-MISSILE (top-right and bottom-left), FROGGER (bottom-middle), and PONG (bottom-right).
For DODGE-THE-MISSILE, we capped the episode length at 5000 frames. For PONG, we capped the episode length at 50 bounces. For
FROGGER , we set r1 = 0.2 and r2 = −1. Note that after our algorithm has learned to play DODGE-THE-MISSILE effectively, it is
capable of collecting powerups while simultaneously avoiding missiles. Note that since continuously trying to move upwards can be a
viable strategy when playing FROGGER, we also compare the performance of our algorithm to an AI player that continuously tries to move
upwards.

0 2000 4000 6000 8000 10000
Episode

0

50

100

150

200
SNAKE Frames Survived Per Episode (easy level, short tail)

Our Method
Random Movement

0 2000 4000 6000 8000 10000
Episode

0

50

100

150

200
SNAKE Frames Survived Per Episode (easy level, long tail)

Our Method
Random Movement

0 2000 4000 6000 8000 10000
Episode

0

50

100

150

200
SNAKE Frames Survived Per Episode (hard level, short tail)

Our Method
Random Movement

0 2000 4000 6000 8000 10000
Episode

0

50

100

150

200
SNAKE Frames Survived Per Episode (hard level, long tail)

Our Method
Random Movement

Figure 6. Performance of our algorithm on SNAKE relative to random play. We evaluate our algorithm’s performance on the following
four different game variations: empty game board with a snake body length of 1 (left), empty game board with a snake body length of 10
(left-middle), relatively cluttered game board with snake body length of 1 (right-middle), and relatively cluttered game board with a snake
body body length of 10 (right). Our algorithm was able to learn effectively on the cluttered game board, but not with the longer body. This
is because having a longer body requires longer-term decision making. On the other hand, a short body makes it possible to play according
to a relatively greedy strategy, even on a relatively cluttered game board.

References
[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The ar-

cade learning environment: An evaluation platform for general agents.
ArXiv e-prints, July 2012.

[2] Y. Björnsson and H. Finnsson. CadiaPlayer: A Simulation-Based
General Game Player. IEEE Transactions on Computational Intel-
ligence and AI in Games, 1(1), 2009.

[3] M. Genesereth, N. Love, and B. Pell. General Game Playing:
Overview of the AAAI Competition. AI magazine, Spring, 2005.

[4] S. Karakovskiy and J. Togelius. The Mario AI Benchmark and Com-
petitions. IEEE Transactions on Computational Intelligence and AI in
Games, 4(1), 2012.

[5] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Ma-
chine Learning. Adaptive Computation and Machine Learning Series.
Mit Press, 2012.

[6] M. Wiering and J. Schmidhuber. Fast online q (λ). Machine Learning,
33(1):105–115, 1998.

[7] J. Young, F. Smith, C. Atkinson, K. Poyner, and T. Chothia. SCAIL:
An Integrated Starcraft AI System. In IEEE Conference on Computa-
tional Intelligence and Games, 2012.

