
A Facebook Profile-Based TV Recommender System

Jeff David
Applied Materials

jdavid@stanford.edu

Samir Bajaj
Apple, Inc.

samirb@apple.com

Cherif Jazra
Apple, Inc.

jazracherif@gmail.com

Abstract

We implement and evaluate several algorithms in the context of developing a recommender system based on
data gathered from Facebook user profiles. In particular, we look at a Matrix Factorization technique (SVD),
a Clustering algorithm (K-Means), two Collaborative Filtering algorithms, a Content-Filtering approach,
Latent Semantic Analysis (LSA), Link Prediction, and Naı̈ve Bayes, and compare their performance in terms
of standard measures. The algorithms draw from principles and techniques in Machine Learning, Natural
Language Processing, Information Retrieval, as well as Graph Theory.

1 Introduction

Recommendation systems are one of the most prominent ap-
plications of Machine Learning, and part of everyday life.
They empower users to sift through enormous amounts of
data and make informed choices. The field of recommender
systems has seen a lot of innovation, and research is actively
moving in the direction of leveraging social content. In that
spirit, our project centers around building a recommendation
system for TV shows based on data collected from Facebook
profiles of several users.

We start with a brief description of the data set used in the
development of the system and the metric we used to measure
performance, followed by each of the various approaches and
algorithms we implemented.

2 Data Set

The data set used in training and testing the recommendation
system was a collection of 11,710 anonymized Facebook pro-
files contributed by volunteers in the CS229 class, as well as
by our friends and family members. Of these, 5,372 users
had expressed a liking for at least one TV show, and 4,413
users had liked two or more TV shows in their profiles. There
are 5,892 different TV shows across all profiles in the data
set. Right away, we can see that the user-TV show matrix is
sparse; the ramifications of this fact will be reflected in our
findings.

Additionally, Facebook profile data has a unary rating sys-
tem for movies and TV shows—you either like something, or
you don’t express any opinion about it. So we used a 1 to
indicate a liking for a show, and a 0 (or −1) to denote absence
of any association.

3 Evaluation Metric

Traditionally, recommender systems have been evaluated on
the basis of RMSE, the Root Mean Squared Error. This is
also the metric that was chosen for the famous Netflix Prize.
However, this works well in a system where users rate items
(TV shows, movies, books, etc.) in a certain discrete range,
e.g., on a scale from one to five stars, à la Amazon.com.

In the case of Facebook profile data, ratings are unary: either
a user likes an item (thereby making a positive association),
or not—and in fact, the absence of a ‘like’ can be interpreted
either as a dislike or ignorance about the item. We therefore
chose to use the Precision–Recall–F1 framework instead, be-
cause the unary rating scale makes the task of recommending
TV shows more like a classification problem. We define Pre-
cision and Recall as follows, where ri denotes a TV show
recommended to the user and L denotes the set of TV shows
liked by the user.

Precision =

∑
i 1{ri : ri ∈ L}∑

i 1{ri}

Recall =

∑
i 1{ri : ri ∈ L}

|L|

4 Singular Value Decomposition

SVD is a matrix factorization technique that attempts to reduce
the ratings space and identify some small number k of “topics”
so that the user preferences can be expressed as a combination
of the user’s interest in a topic and the degree to which the
topic is relevant. This is captured succinctly by the following
equation:

M = U Σ V T

1

In terms of the data set, M ∈ R11710×5892, and we chose to
factor out k = 10 topics—this value of k was chosen based
on examination of a sample of the Facebook profile data—so
Σ ∈ R10×10.

Testing was done by randomly selecting 30% of the users
from the population that had liked at least two TV shows, and
then removing half 1 their ratings—i.e., setting to 0—again,
in a random fashion. The matrix was then factorized and the
predicted ratings were computed by multiplying the user’s
(modified) vector with ΣV T and selecting the top positive
entries. The result was compared with the original ratings to
evaluate the performance.

5 K-Means Clustering

Our next approach was running the K-Means algorithm to
identify clusters of similar users in the data. We followed an
evaluation procedure similar to the one used in the previous
experiment, randomly selecting 30% of the users from the
population that had liked at least two TV shows, and removed
half their ratings. Using the standard iterative implementation
of the algorithm, we were able to partition the data into eight
clusters.

Recommendations made to a test user were those that oth-
ers in the same cluster had collectively liked the most.

6 Collaborative Filtering

The theme of this category of algorithms revolves around es-
tablishing similarities between different users based on the TV
shows listed in their Facebook profiles, and between the items
(the TV shows) based on user interest. This allowed us to rec-
ommend TV shows to users on the basis of the viewing pref-
erences of other similar users. Likewise, using an item-based
similarity, we recommend shows based on their preferences
for certain other shows.

6.1 User-Based Collaborative Filtering

In this implementation2, we used the classic kNN algorithm to
define a neighborhood of users similar to the user who will be
recommended TV shows of interest. The neighborhood is de-
fined on the basis of the cosine similarity measure, which is
defined as follows:

cos(−→u1,
−→u2) =

−→u1 · −→u2

‖−→u1‖ ‖−→u2‖

The vectors−→u1 and−→u2 represent the user’s likes and dislikes in
the unary-based system. A higher value of similarity indicates
that the two users are closer in their tastes for TV shows.

6.2 Item-Based Collaborative Filtering

This algorithm is similar in spirit to the User-based version,
with the users and the items (TV shows) switching roles:
Rather than using similarities between users’ likes to predict
preferences, item-based collaborative filtering uses similari-
ties between rating patterns of different TV shows. If two
TV shows have the same set of users like or dislike them, then
they are similar; users are expected to have similar preferences
for similar items. Our implementation used the same cosine
similarity measure, and much of the same code to evaluate this
approach.

We performed 10-fold cross-validation on each of the above
approaches in order to evaluate performance.

7 Content-Based Filtering

Having examined collaborative filtering techniques to build a
recommender system, we next turned to content-based meth-
ods, incorporating techniques from Information Retrieval (IR)
as well as Natural Language Processing (NLP).

Facebook
Data

Collector

CONTENT ANALYZER

Tokenizer

Normalizer

Stemmer

Stop Word
Eliminator

Parser
EXTERNAL

INFORMATION
SOURCES

Plot Text

IMDb

PROFILE
GENERATOR

TF-IDF

SIMILARITY
MEASURE

Cosine

FILTERING
COMPONENT

Ranking
Recommendations

FEEDBACK

EVALUATION

As a first step, the following transformations were applied to
all input data—the Facebook profiles as well as the metadata
on TV shows—in order to be able to treat all data uniformly:

1. Parsing and Tokenization: All text was split into
tokens with whitespace as the delimiting set of char-
acters. Further, punctuation and other non-alphabetic
characters were dropped.

1Admittedly, withholding less than half the ratings would deliver better precision and recall, so the decision was rather arbitrary.
2This part of the project was coded in Python. For the complete source code, see [1].

2

2. Stop-Word Elimination: A set of 129 most common
English words were used as the stopword dictionary;
all occurrences of these words were eliminated.

3. Stemmer: A standard Porter stemmer was applied.
4. Normalizer: All text was converted to lowercase as

part of the preprocessing task, and encoded as UTF-8.

Subsequent to the aforementioned preprocessing, user profiles
were generated based on their Facebook data as well as the
TV programming metadata available to us. Next, tf-idf scores
were computed for the various features and cosine similarity
was used in the ranking function to compute users most sim-
ilar to a test user. Recommendations were based on ratings of
users in the test subject’s neighborhood.

In order to generate accurate results in this setup, we used
only those users who had liked at least one show for which
we had some metadata, collected from an external source like
Screaming Velocity [7] or IMDb [8]. A 70–30 split of this
reduced set of users was used to carry out cross-validation.
The results surpassed those we had seen thus far.

8 Latent Semantic Analysis

The user–feature matrix generated as part of developing the
Content-Based Filtering system was next used to investigate
LSA by finding a low-rank approximation to the large feature
space. The user–feature matrix M ∈ R11710×26263 was factor-
ized using SVD to UΣV T , with Σ ∈ R10×10. The test users’
neighborhoods were subsequently computed in this semantic
subspace and recommendations were generated accordingly.

Note that the matrix being factorized in LSA is the user–
feature matrix, which is different from the one used in the
very first approach where every user was represented as a vec-
tor in the (also very high-dimensional) space defined by the
various TV shows, but without any Facebook metadata.

9 Link Prediction

From the perspective of Graph Theory, we can look at the set
of users U , TV shows T , and the associations between them,
L, as a bipartite graph G = (U, T, L) where U

⋂
T is empty,

and all edges e ∈ L connect vertices in U with those in T .
The edges are unweighted and the graph represents the com-
plete information of the input data. We can now apply graph
algorithms to gain insight into this network. Concretely, we
transform the problem to that of link prediction, where a rec-
ommendation is a link that is likely to appear as the network
evolves over time.

There are several linkage measures that can be employed
to predict connections; we used Dijkstra’s shortest path al-
gorithm on the bipartite graph, which, for this analysis, in-
cludes users as well as TV shows, and hence has dimensions
R17602×17602. Recommended shows were ranked by distance;
those that were closer to a user appeared at the top of the list.

This algorithm performed fairly well in comparison to others
that also operated only in the domain of users and TV shows.

10 Naı̈ve Bayes I

The first method aims at learning what genre of TV shows each
user likes based on attributes such as comedy, drama, reality,
documentary etc. Facebook profiles with more than 5 liked
TV shows that are listed in our database are considered.

1. Training phase: We determine, for each user, the
probability distribution of each attribute given a TV
show is liked. Each user has his own separate pre-
diction model. The list of liked shows is taken from
Facebook profile and is divided into a Training set
(70%) and a Positive test set (30%). An additional
Negative set of the same size as the positive set is
used to test TV shows for negative cases since nega-
tive true labels from the users are not available. The
Negative set is taken from the overall TV database
and doesnt intersect with the positive set.

2. Prediction phase: After training our user models, we
rank all TV shows from our database by computing
a score for each show. The score is the sum of prob-
abilities of the users attribute (denoted by a below)
distribution for only the attributes that are found in
each show.
Score(user i, TV show j) =

∑
a

[pi(a)∗1{a ∈ TV show j}]

k-Cross Validation is performed by repeating the
training/testing phases and shuffling the 80/20 ratio
of the training and positive set in order to better gauge
how the learning algorithm is performing.

If the score of a TV show from the positive set is in the top
20 scores, it is considered a good recommendation and thus
a successful prediction (since the show belongs to the users
Facebook tv list). If the score of a TV show from the negative
set is outside the top 20 scores, it is considered a successful
(not liked) prediction since we assume it is not liked.

3

11 Naı̈ve Bayes II

The following data preparation and implementation steps were
taken for this approach to the problem:

1. Two types of dictionaries were created for each of the
12 features. The first type of dictionary was a bag-of-
words approach (this type of dictionary is more ap-
propriate for the about feature). The second type of
dictionary tokenized each feature entry found (more
appropriate for the teams feature).

2. The label for the classification models was TV shows.
A TV show dictionary was created by compiling a
list of all TV shows that were liked in all Facebook
samples. The top 1000 TV shows were used for ini-
tial data processing, and the top 505 TV shows were
used for the final classification model (505 TV shows,
including N/A, occurred 10 or more times in all Face-
book samples).

3. Mutual Information was performed to determine the
features with the highest relevance. Based on these
results, 5 features were selected to use for classifica-
tion. Each feature dictionary was truncated to include
only tokens/words that occurred 5 or more times in
all samples combined. A table showing the selected
features, MI score, and feature size for each of the
feature categories is given below:

4. For each Facebook profile sample, a record was cre-
ated for each TV show liked in that Facebook sample.
The label for each of those records was the liked TV
show. So if a Facebook user liked 10 TV shows, 10
records were created for that sample. The binary fea-
ture vector for each record was of size 4552, which
identified which features were present in the record.
31166 records were generated. Thus the feature ma-
trix was 31166x4552, with a corresponding label ma-
trix of 31166x1.

5. Using this feature and label matrix, SVM was im-
plemented using the publicly available LibSVM [5].
Results were poor, 3% accuracy. A closer inspection
of the recommendation vector revealed that the most
popular TV show was always recommended. A grid
approach for trying different values of C (Cost) and
gamma was attempted, as explained in the LibSVM
guide. Prediction accuracy did not improve. LibLin-
ear was also implemented but this did not work as
well.

6. Naı̈ve Bayes was implemented with success. Various
parameters were tried with Matlabs [6] built-in Naı̈ve

Bayes function. It was found that multinomial dis-
tribution mn worked the best. A 70%/30% partition
was used for training/testing the dataset. To weight
it fairly, the number of TV shows recommended for
each profile was equivalent to the number of TV
shows liked in each Profile sample. This is important
when calculating precision and recall for this case, as
the precision when calculated like this is found to in-
crease as we only consider cases where a minimum
number of likes are observed (e.g. 20 likes). Results
for this implementation were as follows: Precision =
43.82% and Recall = 34.49%.

7. Intuition suggests that if a Facebook profile is sparse,
then it becomes difficult to make a TV show rec-
ommendation regardless of algorithm robustness. To
quantify this intuition, the best trained classification
model - Naı̈ve Bayes multinomial distribution - was
tested on data that did not contain any N/As in the se-
lected features (About, Interests, Athletes, Activities,
Teams). There were a total of 6662 records out of
31166 that contained non-N/A values for all of these
features. The data was again partitioned into 70%
training and 30% testing. Results improved signifi-
cantly to Precision = 69.05%, and Recall = 61.39%.
1392 correct predictions were made out of 2016 TV
show likes for Facebook profiles that contained no
N/A values for any of the 5 features. It is worth noting
that Facebook users that had all five of the features
completed averaged 9.8 TV show likes each. This
data validates the intuition that if a Facebook profile
contains lots of information in the relevant features,
then the probability of making a correct TV show rec-
ommendation increases significantly. On the other
end of the spectrum, if a user has no profile infor-
mation, then it is virtually impossible to make a TV
show recommendation. Future work might include
determining the probability of a correct TV show rec-
ommendation based on the sparsity of the data in a
Facebook profile.

8. We now analyze results when only a minimum num-
ber of likes are reported in the Facebook profile. Re-
sults are shown below.

It can be seen that precision increases when the mini-
mum number of likes increases. This tells us that our
Naı̈ve Bayes recommender is very good at matching
the top 20 likes with recommendations, but may not

4

necessarily be in the same sequence. For example, if
only one TV show is recommended, in order for pre-
cision to count that case as true, that TV show must
be the only one mentioned (and thus also the favorite)
TV show of the user. Even if that TV show was the
second favorite TV show, that recommendation will
be counted as false. When considering 20 TV shows
per user, the criteria becomes less stringent and the %
of true matches of recommendations to likes goes up
significantly.

12 Summary

We covered a lot of territory in the course of working on this
project, and gained useful insight in the process of implement-
ing the different algorithms.

First, a real recommender system is a complex structure, and
takes a lot of effort to build and fine-tune. Even for a stu-
dent research project like the one we built, it took an immense
amount of labor to collect, process, filter, and organize the
data before we could run any algorithms. Second, there is
real value in metadata, if it is available. The algorithms that
used external data and attributes from a user’s Facebook pro-
file performed consistently better than those that didn’t avail
any metadata. In discussions with engineers who have built
large-scale commercial recommendation engines, we learned
that production systems typically use a blend of several dozen
algorithms, combining the best of what each one has to offer.

The following table lists the precision/recall results for the
various algorithms we implemented.

We also spent a substantial amount of time investigating a so-
lution using an SVM-based classifier. The idea was to treat
the recommendation of a TV show to a user as a classifica-
tion problem because of its similarity to the Facebook ‘like’
feature: we predict +1 for a TV show that we think the user
would like, and −1 otherwise. Unfortunately, the results from
this approach were poor, indicating that it wasn’t a viable tech-
nique.

13 Acknowledgments

We thank Andrew Maas for his help in getting started, and for
guidance along the way.

We would also like to acknowledge the support and data pro-
vided by Graham Darcey and Wayne Yurtin of Screaming
Velocity, Inc., for our project.

14 References

1. Bajaj, Samir, Source Code available at GitHub:
samirbajaj/cs229-project

2. Lops, P., de Gemmis, M., & Semeraro, G. (2011)
Content-based Recommender Systems: State of the Art
and Trends, In F. Ricci et al. (eds.), Recommender Sys-
tems Handbook. Springer Science+Business Media.

3. Ng, Andrew, CS229 Lecture Notes, 2012, Stanford Uni-
versity.

4. Turney, Peter D. & Pantel, Patrick (2010) From Fre-
quency to Meaning: Vector Space Models of Seman-
tics. In Journal of Artificial Intelligence Research 37,
pp. 141-188.

5. Chih-Chung Chang and Chih-Jen Lin, LIBSVM:
a library for support vector machines. ACM
Transactions on Intelligent Systems and Technol-
ogy, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

6. http://www.mathworks.com/help/stats/naivebayesclass.html
7. Screaming Velocity, Inc., http://www.screamingvelocity.com
8. IMDb, The Internet Movie Database, http://www.imdb.com

5

