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Introduction

Recent work in CS education has leveraged machine-­learning techniques to gain insight into the ways in which students                                                  
approach a given programming assignment. Piech et al. (Piech, Sahami, Koller, Cooper, & Blikstein, 2012) created a                                               
graphical model of how students in an introductory programming course progressed through a homework assignment.                                         
They were able to extract characteristic pathways based on “snapshots” of student codes that were taken every time a                                                     
student attempted to compile his/her code. The authors also illustrated the relevance of their approach to education by                                                  
showing that their paths predicted student midterm grades. This suggests that teachers and students may be able to use                                                     
student  path  data  to  develop  targeted  instruction.

In a similar approach, Helminen et al. (Helminen, Ihantola, Karavirta, & Malmi, 2012) examined the pathways that                                               
students took to solve a collection of scaffolded programming puzzles that require reordering a set of shuffled lines of                                                     
code.  They  found  several  characteristic  path  shapes,  including  loops,  branches,  and  dead-­ends.

Encouragingly, all of the work mentioned so far is also consistent with prior research on the psychology of programming                                                     
(Soloway & Ehrlich, 1984) that suggests that expert programmers have a mental storehouse of characteristic                                         
programming idioms, and that they can read and write code in larger conceptual “chunks” than novices. However, student                                                  
homework assignments are untimed, allow for a range of solutions, and only examine the final products of student work.                                                     
Thus, a closer examination of the process by which students complete assignments can reveal important distinguishing                                            
information,  such  as  the  size  of  code  “chunks”  that  get  implemented  in  successive  updates.

Piech et al. worked with of snapshots of code generated from students in the fall of 2010, but confirmed similar student                                                           
development paths in data from a summer class. However, their work only focuses on the first and simplest assignment                                                     
of the class. Though Piech et al. have been able to predict midterm grades based on the student paths during this first                                                              
assignment, these results do not offer any insights into when a student needs help at a certain point in his problem                                                           
solving process, or as to whether there is a causal relation between teacher help that a student received and his                                                        
progression through the assignment. We aim at addressing this question by doing a first study to look at whether help                                                        
seeking behavior of students correlates with their coding activities for an assignment. We use different ways of                                               
representing student by the body of code “snapshots” they wrote during a single assignment to predict whether the                                                  
student  got  teacher  help  during  the  entire  quarter  or  not.

Data  Sources  and  Overall  Goal

We have collected a range of data from 514 students enrolled in the Stanford CS106A course on basic Java                                                     
programming.  Our  data  consist  of:

-­ Text “snapshots” of every student’s code, taken every time a student tried to compile his/her program. We have data                                                        
for assignments 1 (“Karel the Robot” problems), 2 (simple Java graphics and calculations), 3 (a simple “Breakout”                                               
computer game), 4 (the game “Hangman”), and 5 (a graphing program). There are about 7,000 -­ 10,000 snapshots for                                                     
each assignment, across all students. For FindRange, the assignment analyzed here, we had 8772 instances. In                                            
FindRange,  the  problem  is  to  find  the  maximum  and  minimum  of  a  sequence  of  numbers  and  output  it.

-­ Tracking data from an on-­campus homework help service. Every day, class TAs working at a computer lab offer                                                     
personalized help to students who visit. The TAs track who visits and offer brief notes, including the name of the                                                        
student, the time, and usually the name of the assignment. For example, there were around 500 help-­center visits for                                                     
assignment  4  that  came  from  about  150  distinct  students.

-­ Data from a weekly survey that asks students about their perceived skill, perceived difficulty of the assignment, their                                                     
help-­seeking  strategies,  and  demographic  information.

This project is the start of a larger machine-­learning project based in the lab of Assistant Professor Paulo Blikstein at the                                                           
School of Education. Our data is potentially sensitive, so we had to establish IRB approval, anonymize our data, and                                                     



2

work extensively with the course professor and TAs. The process of getting approval and collecting our data took much                                                     
longer than we thought, so we have had to scale back some of our initial ambitions here. So, for example, as this is very                                                                    
new  data,  we  are  still  in  the  process  of  obtaining  all  grades  for  the  course  (assignments,  midterm,  and  final  test).

In this project, we used TA help data across the quarter and data from assignment 2 problem 5 (“FindRange”). In the                                                           
FindRange problem, students are tasked with writing a piece of software that will accept an arbitrary list of numbers and                                                        
output the maximum and minimum. Solutions to the problem typically take one of two forms -­ a set of conditional                                                        
statements nested inside of a loop, or vice-­versa. We have a sample of 370 students who completed this problem. For                                                        
our TA help data, 50% used no TA help, 25% used it 0-­3 times, and 25% more than 3. Our goal is to investigate whether                                                                       
features of a student’s set of snapshots can be used to predict the degree to which he/she sought out help. This can be                                                                 
interpreted  as  an  indirect  metric  of  a  student  needing  help,  or  as  a  way  of  identifying  a  student  as  a  “help-­seeking  type”.

Methods

Our process can be broken down into three stages (see Figure 1): characterizing snapshots, characterizing students                                            
based  on  the  snapshots,  and  classifying  by  intervention  data.

1. Characterizing snapshots: Our first step was to develop feature sets and metrics for characterizing the data at the                                                     
level of individual snapshots. That is, we want to be able to make meaningful statements about the similarity of different                                                        
snapshots.  We  developed  and  tested  three  feature-­sets:

-­ Constrained bag-­of-­words: We implemented a bag-­of-­words model that modeled the counts of the 50 Java keywords like                                                  
“public”, “int”, and “double”, ignoring unique subject-­created variable names as irrelevant sources of variance. As a                                            
metric,  we  simply  use  the  Euclidean  distance  between  histograms  of  word  frequencies  (Salton,  Wong,  &  Yang,  1975).

Fig  1  -­  A  summary  of  the  different  approaches  taken  in  this  project

-­ Non-­semantic text features: We also extracted a collection of relatively simple snapshot text features that are                                               
“non-­semantic” -­ they capture a minimum of information about the code. These features include number of lines, number                                                  
of comments, and the magnitude of changes in both lines and comments as compared to the previous snapshot in a                                                        
student’s sequence. Here as well, we used the Euclidian distance as the metric for dissimilarity measures, after                                               
preprocessing  the  data  by  different  means  of  normalization.

-­ Semantic text features: Finally, we extracted a collection of features that capture more of the meaning of the code itself                                                           
in the context of the assignment. Specific to this FindRange assignment, the codes varied the most along the                                                  
dimensions of number of variable declarations, number of functions and subfunctions, and number and nesting level of                                               
conditional  statements  and  loops.

2. Characterizing students: The next step is arguably the computationally most complex of the three. Our goal here is                                                     
to  gather  information  at  the  level  of  a  student,  as  opposed  to  a  single  snapshot.  We  tried  two  methods  for  this:
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-­ Cluster-­based student feature selection: Given the snapshot characterization from step 1, we created a new                                            

feature set to characterize students. First, we had to cluster the snapshots into representative code “states by                                               

kernelized K-­Means (Sewell. & Rousseau, 2005). The difficulty was in determining an optimal number of                                         

clusters. We chose the optimal number of clusters using a combination of silhouette value maximization (Wang,                                            

Wang, & Peng, 2009) and Davies-­Bouldin index minimization (Petrovic, 2006). We obtained 16 clusters. We then                                            

built a new feature-­set at the level of individual students based on their patterns of traversing the snapshot                                                  

clusters. Specifically tracked their sequence of transitions from cluster to cluster, their frequency of cluster                                         

changes, amount of time spent in any given cluster, time to solution, and total count of clusters visited. We then                                                        

trained an SVM with a gaussian kernel on this new feature-­set to predict the degree of intervention that a student                                                        

received.

-­ Mean or final code snapshot: This method was a deliberately-­simple alternative to the first. We simply                                               

characterized every student with one of two features: the contents of his/her final snapshot, or the contents of                                                  

the mean of the second half of his/her snapshot series based on the characterizations of step 1. The idea behind                                                        

taking a mean of second half of the submissions is that we observed noise in the data set arising from the                                                           

following facts: 1) Some students preferred to work in another SDK other than Eclipse, and therefore showed a                                                  

great variability in the features sequence, since they would copy and paste their own code, and compile                                               

afterwards  and  2)  Less  noise  was  observed  for  the  second  half  of  the  snapshots  sequence.

3. Comparing with intervention data: Our final step was to classify the TA intervention data based on the student                                                     

representations. We performed the binary classifications (help vs no help) by running a nonlinear SVM with a multi-­layer                                                  

perceptron, and the 3-­level classification (no help vs 1-­3 visits vs >3 visits) with a Matlab built-­in k-­Nearest-­Neighbor                                                  

classifier  to  predict  student  help-­seeking  based  on  student  features.

Results

A summary of the results obtained can be found in the following tables in Figures 2, 3, 4 and 5. What is common to all                                                                       

the results is that despite the coarse feature representations that do not account for temporal dimension of the                                                  

snapshots, nor for the state transitions of the students as is done by Piech et al., by using the simple measures alone,                                                              

we have been able to show that there is a correlation between the help seeking behavior across the entire quarter and a                                                              

students’  assignment.

Fig.  2  -­  Results  obtained  from  the  student  clustering  approach

Fig.  3  -­  A  summary  of  our  “mean  and  final  snapshot”  model  feature  choices  resulting  from  Feature  Selection
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Fig.  4  -­  A  summary  of  the  results  achieved  for  each  model  choice

As shown in Figure 2, the approach of clustering students based on the parameters that capture their progression through                                                     
the snapshot states produced an accuracy of 66.5% with a precision of 63.6%. However, seen in Figure 4, a very simple                                                           
representation of a student with only a mean of snapshots, or even just the final snapshot was able to produce a better                                                              
classification with more than 71%. Though, the precision is with 55% lower for the representation of a student with the                                                        
mean of snapshots. In terms of TA intervention labeling, we found that a binary labeling produces better results than                                                     
ternary labeling. We assume that in order to make the distinction between a student who seeks more help than another                                                        
one, we have to use a more complex representation that takes into account the temporal dimension of the progression.                                                     
When it comes to the representation of student snapshots with semantic text features, unsing a standard feature                                               
selection model, we found differences in what features best classify TA intervention for the different models (see Figure                                                  
4). Interestingly though, the nesting of the conditional statements and loops does have a strong impact on the                                                  
classification  results.

In terms of student clustering, applying k-­means to the dissimilarity matrix of student snapshots represented by                                            
semantic text features, the selection model suggested 15 clusters as a good representation (see Figure 5). Indeed, as                                                  
indicated by the distance matrix in Figure 5, the snapshots are well separated into the clusters (as further indicated by                                                        
the  silhouette  value  of  about  0.72).

These results are especially interesting because they suggest that there are generalizable characteristics found in a                                            
small sample of code from one assignment early in the class that can be indicative for help-­seeking behavior across the                                                        
entire  quarter.

Conclusions

Using a simple measure of a student’s progress and representation of his code in a single assignment, we were able to                                                           
predict with accuracy of about 72% student help-­seeking behavior across the whole quarter. This might not seem very                                                  
accurate. But in light of the fact that the representation is very simplistic, and that we have excluded any complex                                                        
measures entailing temporal dimensions, these results indicate that there is structure in the relationship between a                                            
student’s progression through an assignment and his help-­seeking behavior that is worth to be further examined.                                            
Interestingly though, the most simple representation of a student by means of his assignment is the best predictor for his                                                        
help-­seeking  behavior  across  the  quarter.

This project is the start of an extended investigation of CS106a data. We are in the process of obtaining assignment and                                                           
test grades and all assignment snapshots. We are also collecting data from a weekly survey that evaluates student                                                  
motivation and perceived difficulty on each assignment. In future work we intend to integrate our intervention data into a                                                     
Markov  model  of  assignment  progress  that  can  predict  grades  and  suggest  critical  points  for  intervention.

NOTE: We thank Chris Piech, Marcelo Worsley, and Paulo Blikstein for their invaluable suggestions and support on this                                                  
project.
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Fig  5  -­  Dissimilarity  matrix  plot  of  the  k-­Means  clustering  and  2  representative  snapshots
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