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1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a technique to measure and image the Blood-
Oxygen Level Dependent (BOLD) signal in the human brain. The BOLD signal is strongly corre-
lated with the brain activity. Consequently fMRI makes it possible to image activity patterns in
a brain of a living organism and thus observe and record its responses to a variety of stimuli. For
this reason fMRI techniques have become very popular in psychology and cognitive sciences.

A typical fMRI experiment consists in stimulating subjects in some way (vision, hearing, touch
etc.) and recording the corresponding activity pattern for a large number of small brain volumes
called voxels. Activities within voxels are used as features for machine learning algorithms to relate
brain areas with certain types of stimuli. Unfortunately the fMRI data has many pitfalls. In most
cases it is characterized with a very large number of features formed by brain voxel activations (up
to several thousands) and a low number of training examples, typically of the order of hundreds.
Data pre-processing is of particular interest for two reasons. First, selecting a smaller set of features
can improve stimulus prediction accuracy and reduce computational complexity. Second, given the
location of voxels most relevant to the prediction task, conclusions about brain circuits can be
made.

Current research employs a number of voxel selection techniques. They can be as simple as
manual segmentation of regions of interest from the entire brain [1] or more elaborate involving
statistical significance tests. Recently more advanced algorithms such as ridge regression, lasso,
sparse logistic regression or graph Laplacian based methods have started to be more frequently
used [2]. Many of these methods promote sparse solutions, i.e. such where many of the voxels are
assigned a zero score and therefore considered uninformative. This notion agrees with neurological
understanding of brain organization into different regions responsible for different tasks. For ex-
ample speech recognition will cause increased activity of certain areas of the brain, and will have
little influence on other.

So far none of the above methods explicitly encodes correlations between features using a
covariance matrix. One of the problems with using empirical covariance is the fact that just a few
data points are available making this matrix non-invertible. Therefore it cannot be directly used
in optimization algorithms. This project investigates an approximate inverse covariance matrix
estimation technique and its applicability to imposing a Gaussian prior distribution on feature
scoring weights.
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2 Algorithms

2.1 Univariate tests

Univariate tests evaluate the predictive power of each voxel independently of others. The most
popular algorithm used is the t-test, which measures the probability p of a population being drawn
from a distribution with some mean µ. For each voxel q, this mean is assumed to be the average
activity during resting state when no stimulus is shown. It is then compared to the activity
distribution of each of the P stimuli and the corresponding pq,l is computed. For an individual
stimulus, the voxel score is then determined as 1− pi,k and therefore the entire score for P stimuli
becomes

sq,t−test =
K∑
l=1

(1− pq,l) .

Another univariate test consists in evaluating individual voxels based on their performance as single
features used for classification. The output label is predicted using just one voxel at a time, and
the prediction accuracy denotes the feature score.

The two remaining scoring methods consist in computing the mutual information (MI) or co-

variance (Cov) between the voxel q time course x
(:)
q and the class label indicator variable 1{y(:) = l}.

Since the mutual information definition for continuous variables is not convenient to use, the voxel
time course can be quantized to discrete values.

sq,MI =
P∑
l=1

MI(1{y(:) = l}, x(:)
q )

sq,Cov =

P∑
l=1

∣∣∣Cov(1{y(:) = l}, x(:)
q )
∣∣∣

2.2 Multivariate tests

As opposed to univariate tests, where each feature is considered independently, multivariate tests
aim at using multiple features at a time. Theoretically such an approach allows to discover feature
correlations. Consequently a set of features, each of which performs poorly on its own, may result
in a substantially improved classification accuracy or better representation of a particular stimulus.
Since in most fMRI experiments stimulus classification is performed, it is desired to find a set of
weights θ such that ŷ(i) = f(θTx(i)) provides the best estimate of the true stimulus label y(i). Very
high or low values of θ typically indicate that a particular feature has a significant contribution to
the classification decision. In general, consider a P class classification problem with N different
features, a feature q has a score

sq =
P∑
l=1

∣∣∣θ̂(l)
q

∣∣∣ q = 1, . . . , N.

In the most general case, weight parameters are obtained by maximizing their likelihood function
together with some penalty P(θ(l)). In this approach the task is to maximize the likelihood function
of the stimulus class label y, given the activity pattern time courses x.

θ̂(l) = arg max
θ(l)

{
L(θ(l))− λP(θ(l))

}
= arg max

θ(l)

{
m∑
i=1

log p(y(i) = l|x(i); θ(l))− λP(θ(l))

}
(1)
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where λ is some tradeoff parameter. With P(θ(l)) = 0, the expression simplifies to a maximum
likelihood estimation. However, this method does not naturally promote sparsity in the solution
and due to few training examples it overfits the data and generalizes quite poorly. The penalty
term P alleviates these issues. Popular penalty functions involve the l1 and l2 norms (lasso and
ridge regression) Seen from the probabilistic MAP perspective adding a penalty is equivalent to
imposing a constraint on the parameter distribution. For example in ridge regression the prior is a
Gaussian distribution p(θ(l)) ∼ N (0, I).

In a recent paper Kamitani et al. [3] investigated the sparse logistic regression model for feature
selection. Their method imposes constraints on hypothesis weight distribution. It is assumed that

these weights are Gaussian with zero mean and some variance α−1, p(θ
(l)
q |α(l)

q ) ∼ N (0, α−1
q ). The

individual weight variance parameter is not deterministic either, but rather distributed according to
a gamma distribution, p(αq) ∼ α−1

q . If during the likelihood maximization process the αi parameter
becomes very large, the corresponding voxel is deemed irrelevant and therefore pruned from the
set. While this method is quite efficient at selecting a sparse voxel set, the solution relying on the
Newton method is computationally complex. It requires multiple inversions of a N × P square
matrix, where N is the number of features and P the number of stimuli. A more computationally
efficient, albeit approximate, solution has been proposed by [4].

2.3 Proposed algorithms

2.3.1 Correlated logistic regression

Other methods typically assume independence between weights θ
(l)
q . In correlated logistic regression

a Gaussian prior distribution on weights θ(l) is assumed, i.e. p(θ(l)|l) ∼ N (0, Σ̂l), it however has a
non-diagnonal covariance matrix. The penalty function is therefore given by

P(θ(l)) = θ(l)T Σ̂−1
l θ(l).

Since the number of data points is smaller than the number of features, the empirical covariance
matrix Σe is not full rank, and therefore it cannot be inverted. In a recent paper Friedman et al.
[5] proposed a method for a sparse, inverse covariance matrix estimation. The matrix Σ̂−1 is a
solution to the maximization problem

Σ̂−1 = arg max
Σ−1

{
log det Σ−1 − tr

(
ΣeΣ

−1
)
− ρ||Σ−1

l ||1
}

where Σe is the empirical covariance matrix and ρ is a sparsity promoting hyperparameter. With
the inverse covariance matrix estimate in place, the penalty function P can be easily incorporated
into the likelihood function (1) and the maximizing argument can be found using for example
gradient descent.

2.3.2 Factor analysis scoring

The final scoring method is based on the factor analysis. By performing factor analysis with k
dimensions it is assumed that the N dimensional data can be approximated by using k dimensions
only.

x(i) = Λz(i) + Φ

where Φ ∼ N (0, D) and D is a diagonal covariance matrix. The lower the variance of Φ associated
with a particular feature, the closer this feature is to being a member of the k dimensional subspace.
Assuming that a given stimulus is represented by points on a k dimensional hyperplane, then the
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Dq,q is inversely proportional to the average distance of the feature q from this hyperplane. The
feature score can be therefore given by

sq =
P∑
l=1

∣∣∣∣ 1

Dq,q

∣∣∣∣ .
3 Results

The experiments were conducted on fMRI data, where subjects were shown words at six various
eccentricities. Three stimuli were displayed to the left and three to the right of the fixation point.
For each subject three experimental runs were performed, each run consisted of 150 time points.
In order to limit the computational complexity, the data for two distinct regions of interest (ROI)
of only one subject were evaluated. The regions of interest were the early visual areas: left and
right V1, each having 444 and 836 features respectively. For each run the time course data for each
voxel were normalized to N (0, 1).

Feature selection algorithms were evaluated using 3-fold cross-validation. One third of the data
was used for feature ranking the remaining two-thirds were used as training and test sets in a 5-fold
cross-validation. Given a particular voxel ranking, the training and test data sets consisted of n
best scoring features only. Due to differences in ROI sizes, n is in fact a fraction of the total number
of voxels constituting an ROI. The classification was performed with an SVM classifier with linear
kernel [6], and the c parameter selected in a grid search. The remaining hyperparameters ρ and λ
were also found using extensive search, however the experimental results did not vary significantly
with their choice.

Experimental results are presented in figure 1 where stimulus prediction accuracies for 100
different subsets of best scoring ROIs feature sets of the left and right V1 are given. In each plot a
single solid line corresponds to one feature selection method. This line is drawn on top of a colored
region, whose boundaries are error bars. The random guess performance of 16.5% is represented
by the red dotted line. In all cases feature selection methods allow to achieve an above chance
performance with a very small subset of about ∼ 5% of features. For both ROIs, all eight methods
exhibit very similar performance, only the feature-output label covariance based scoring is slightly
inferior. All curves also demonstrate the law of diminishing returns; increasing the feature count
from 5 to 10% has a much bigger impact on prediction than a similar change from 40 to 45%.
Selecting more than half of features has virtually no effect on the prediction performance. By
comparison using a greedy forward filtering approach, resulted in selecting 0.4 of the left V1 voxels
and yielded a 53% prediction accuracy (0.07 and 42% respectively for the right V1). These results
are comparable with the ones obtained via different feature scoring methods.

4 Conclusions

This project proposed two new fMRI data voxel selection methods: covariance logistic regression,
and factor analysis. In the covariance logistic regression a Gaussian prior on the feature weight
distribution is imposed. Since the empirical covariance matrix is not invertible, its approximate
sparse inverse is used. The second method, based on the factor analysis, used the random noise
variance from this model as indicative of feature relevance. The two methods achieved comparable
performance to other commonly used selection mechanisms.
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(a) Left V1 (b) Right V1

Figure 1: fMRI data feature selection algorithm evaluation.
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