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Abstract 
 
The goal of this project was to create a website classifier 
for Hacker News. Hacker News (news.ycombinator.com) 
aggregates articles and has users vote them up. If the 
article gets enough up votes in a certain amount of time, 
then it makes the front page of Hacker News which 
displays 30 articles at a time. Hacker News uses a 
ranking algorithm which leverages time since submission 
and number of up votes, which takes the form of: 
 
 
 
 
Where G is the gravity, P is the number of up votes and T 
is the time since submission. 
 
If the ranking is among the top 30, then it is displayed on 
the front page. If an article gets displayed on the front 
page, then the site receives thousands of hits, so one can 
see it being beneficial to make it on the front page. This 
was the basic motivation behind my project. Given an 
article, could I predict if it was going to make the front 
page? 
 
1. Introduction 
 
 Website classification has been done many times 
over on the Internet, but usually with more predictable 
categories. For Hacker News, there are a lot of intangible 
factors that go into making the top 30. For instance, a 
group of friends can force their article to the top 30 by all 
up voting the article themselves, and once the article has 
reached the top 30 it gets viewed many more times and 
thus has a greater chance of getting even more up votes. 
An article can usually make the top 30 if it gets 4 to 5 
votes within an hour, so it's not implausible for a group to 
artificially push their article to the front page. Another 
factor to consider is luck. Not every article that is 
submitted gets read and an article’s lifetime on the “new 
submission” page is very short (depends on how many 
articles are being submitted during that time, but it’s 
usually around an hour). Theoretically, an article can be 
worthy of the top 30 but is only read by a small subset of 
the users that are interested in the topic. These are flaws 
in the Hacker News system itself, and thus will be very 
hard to predict when situations like stated above will 
arise. 

  
2. Challenges 
 
2.1 Coolness Factor 
 
 A lot of articles make the top 30 not because they 
have really good content but rather the author has 
made/coded a neat project and other people like it. As far 
as machine learning goes, it will be hard to define the 
usefulness or smartness of an application. One partial 
solution I came up with was identifying projects from 
non-projects. Some articles begin the title with 'Show 
HN:', and I used that as an indicator to tell if the article 
was a project or not. 
 
2.2 Parsing Images/figures:  
 
 This was another stumbling block since if a 
document contained just a single image or figure, I had 
no way to get anything from the document. At one point I 
tried counting the number of images in the article but this 
was useless since it was hard to distinguish between 
pictures for ads and pictures that actually displayed 
information. 
 
2.3 Identifying Trends 
 
 Dealing with trends in the technology world was 
another difficult challenge. Hacker News operates a lot 
on those trends. For example, when Steve Jobs died, all 
30 articles of the front page were about him. Or 
sometimes something new in the tech world happened 
and that article made the front page. How to differentiate 
between an article about something that just recently 
happened and one that didn't was a tough problem to 
solve. 
 
3. Approach 
 
3.1 Logistic Regression 
 
To tackle this assignment I decided to use logistic 
regression because, ultimately, I was more familiar with 
it and wanted to be able understand my results better. 
Once I got comfortable with my data using logistic 
regression, I tested my model on a support vector 
machine. One downside I found by using logistic 
regression was the time it took to run in comparison to 



the SVM. Since my project dealt a lot with text, I found 
myself having very long feature vectors which did not 
scale well with logistic regression. 
 
3.2 Choosing a feature vector 
 
 As with most machine learning projects, choosing a 
good feature vector is paramount, so I decided to see if I 
could predict whether an article could make the front 
page. I setup a python script that tested me on the data 
that I had collected – it would give me a link url and then 
I would input yes or no depending on whether I thought 
the article would make the front page.  
 
 I proceeded to open approximately 100 links and 
read the article. I took notes on the articles to try and 
prepare a usable feature vector. The first thing I noticed 
though was that it was actually very hard for me to 
predict accurately. Throughout the testing I found that 
keywords were essential to the likelihood of making the 
front page. Another feature I noticed was that almost all 
the articles came from the same pool of websites. While I 
was doing the testing, I became increasingly aware of the 
challenges I presented in the previous section. For 
example, two articles came from Github.com and they 
were both programming projects. One made it to the 
front page and the other one did not. As a human, I was 
able to tell which one was going to make it since I saw 
the practicality and usefulness in the program; however I 
wasn't sure how to represent this as a feature. Lastly, I 
noticed that some articles contained a lot of pictures 
while others did not, while this did not directly help me 
predict if the article was front page material or not, 
perhaps there was some sort of pattern that a machine 
could pick up on that I could not. 
 
3.3 The Feature Vector 
 
 After much iteration, I ended up with this feature 
vector: 
 
 AskHN: <0 or 1> – This indicated whether or not the 
article was a question to the Hacker News community or 
an article. Hacker News question were denoted by 'Ask 
HN:' in the title 
 
 ShowHN: <0 or 1> – This indicated whether or not 
the article was a project built by the submitter. Often 
users would submit their projects with 'Show HN:' in the 
title to indicate that they built this 
website/product/application. 
 
 Hour: <0-23> – This indicated the hour in which the 
article was submitted. This turned out to be a pretty 
important feature because during some hours there were 
a lot of submissions and it made the article less likely to 
make the front page. 
 

 WordCount: <Positive Integer> - This was simply 
the number of words in the article. 
 
 TitleWordVector: <Array of 0s and 1s> - This was a 
vector of length 400. I computed the 400 most frequent 
words that were in the title and if the article in question 
contained one of those words, then I would insert a 1, if 
not then a 0. 
 
 DocumentWordVector: < Array of 0s and 1s > - This 
was a vector of length 500, like the title vector, if the 
document in question contained one of the top 500 words 
then I would record a 1 in that position. 
 
 NounPhraseVector: < Array of 0s and 1s > - This 
was also a vector and was of length 500. It contained 
noun phrases from the document (had to have a length of 
at least 2 words). Same strategy used in previous vectors. 
 
 NamesVector: < Array of 0s and 1s > - This vector 
was 100 long and contained names from the article. Same 
strategy used as in previous vectors 
 
 ComheadVector: < Array of 0s and 1s > - Top 100 
comheads/domains, if the article was one of the domains, 
then I’d mark a corresponding 1 in the entry. 
 
4 Data Preparation 
 
4.1 Data Collection 
 
 To keep track of all the submitted articles I polled 
the stream of newly submitted articles every 5 minutes. I 
stored information on submission time, title, domain, url, 
and all the text in the article. I would also poll the front 
page of Hacker News every 5 minutes; if one of the titles 
that I had in my database was also on the front page than 
I would mark that example as having made the front 
page. This made for a very nice dataset, examples were 
all marked as either front page or not. 
 
4.2 Data Pre-processing 
 
 Analyzing the text was another issue. The first 
obstacle to overcome was getting rid of all superficial 
text. It was easy enough to get rid of html markup using 
an html parser, but I only wanted to get text that involved 
the article. As a heuristic, I only took text from html 
blocks that had a 2:1 text to markup ratio. In other words, 
a markup tag like <p>Lots of text</p> would be selected 
but something like <a 
href=”www.somepage.com”>ad</a> would not since 
there were more characters in the mark up than the actual 
text. This tactic helped filter out ad links and menus. 
However, I think it could have been improved even more 
if I created a machine learning algorithm for extracting 
important text from an article, but that's another project. 
 

http://www.somepage.com/


 Never having taken a natural language processing 
class, this was the most challenging for me. Thankfully,  
Python's nltk (natural language toolkit) was very useful. 
After stemming and stopping all words in the text, I then 
broke the article into sentences. I then tagged all the 
words in the sentence with their part of speech. This 
served two purposes. One was to only count words that 
were nouns toward the word frequency vector and the 
other was to find noun phrases. To locate noun phrases I 
created a small regex which checked for a demonstrative 
followed by an optional adjective and then one or more 
nouns. 
 
5 Results 
 
5.1 Findings 
 
 After a slow start I was able to reach some 
conclusive results. See table 1 (last page) for a record of 
my results and their statistics (I didn’t post accuracy 
since the data was skewed): 
 
 In the end, my F1 score hovered around 40-60 which 
I was happy with considering that there were a lot of 
cases I didn’t know how to account for. 
 
6 Future Improvements 
 
6.1 Image Processing 
 
 As a possible extension, I wanted to somehow 
incorporate images into the feature vector. I attempted 
simply counting the number of images on a webpage, but 
this wasn’t very helpful because of all the ads and other 
images that were not related. Perhaps developing a 
machine learning algorithm to decide whether an image 
is relevant to a document would help get a more accurate 
perception of how images contribute to the article. 
 
6.2 Aesthetics 
 
 I also wanted to look into seeing how the aesthetics 
of a document affected whether people liked it or not. I 
was thinking about trying to determine the most used 
colors in a document to see if color affects readers in 
some unconscious fashion. Also the font might make a 
difference as well. 
 
6.3 Text Analysis 
 
 As far as text analysis goes, I was thinking that as 
well as determining names in a document I could also 
determine products and companies using a list of current 
technology companies and products. Lastly I wanted to 
be able to distinguish between scholarly, fun, and blog 
articles. I think this too would require a machine learning 
algorithm, but it would be interesting to see if it helped 

classify front page articles. 
 
6.4 Trends 
 
 Dealing with trends was a difficult issue and I’m not 
sure that only using the past 3 days of data was an 
adequate solution. For the future it would be interesting 
to add a sort of gravity to each feature. That is, given the 
time since submission somehow reduce the importance 
of its features. I’m not sure how I would implement this, 
but it might help better predict trends. 
 
7 Applications 
 
7.1 Web Application 
 
 I built a small web application (hnpredict.com) to 
apply the machine learning algorithm. It was interesting 
to build because it presented its own set of problems. 
Manipulating matrices in Octave is one thing, but storing 
them in a database and using them in a less mathematical 
language is a bit of a challenge. It proved quite useful to 
use a NoSql database like MongoDB to store my theta 
vector. Also, creating the feature vector given a website 
and URL was very time consuming. These are some 
things that I would need to take in consideration before 
implementing a machine learning algorithm for a web 
application. It’s impractical for real-world purposes to 
take a minute processing and creating a feature vector. 
 
7.2 Other Applications 
 
 The machine learning algorithm to predict front page 
articles can be applied to other news sites other than 
Hacker News. Many websites like Reedit and Digg have 
much the same setup and could be analyzed in the same 
manner. I also could see this being used at news 
websites; given a bunch opinion pieces written by the 
outside world, they could then use the algorithm to help 
select which ones to be featured on the front page. 
 
8 Conclusion 
 
 In the end, while I think my algorithm performed 
well considering the challenges it had to overcome, I 
don’t think it’s very practical. It’s too hard to predict 
whether an article is interesting and will often get 
confused on articles that are technology related but not 
very new or interesting. The predictions that it gets 
correct are often ones that are easy for the human to 
predict as well. Perhaps implementing some of the 
improvements mentioned in section 6 would help with 
this. As it stands I would consider it a negative result and 
would not use it on a regular basis to help me choose 
quality articles to Hacker News. 



 

Trial Number F1 Score Precision Recall Description of Trial 

1 0.0 0.0 0.0 Initial quick test. I didn’t include noun phrases or names in 
this test. Tested on rather limited data too. 

2 2.9 N/A N/A Created learning and validation curves. Found that the 
optimal lambda was around 50 and that I was drastically 
overfitting the data with all my features and not very many 
examples. 

3 0.0 0.0 0.0 Added lots more data to both training and cross validation 
sets. 

4 3.2 75 1.6 For this trial I switched to only creating my feature vector 
based on articles that were on the front page in hopes of 
defining what a good article is more concretely. 

5 7.6 30.7 4.32 Didn’t change anything except I started to experiment with 
changing the threshold. I moved the threshold down from .5 
to .3. 

6 14.8 8.7 50 Added noun phrases and name vectors! Had to drop my old 
database so I didn’t have very many examples in this trial. 

7 68.1 76.2 61.54 More data, and cut down the length of the document word 
and title word vectors. 

8 64.7 61.11 68.75 Made a function to optimize threshold. I believe the reason 
the F1 score is falling is that I’m beginning to have too much 
data. 

9 25.0 20.83 31.25 Same data and features but tried running it on a SVM. 

10 21 50.0 13.33 Even more data, I need to deal with the fact that articles that 
would make the front page 2 weeks ago would not make it 
now. 

11 64.7 56.84 75.0 Only take data from the past 3 days to deal with trendiness of 
topics. 

 
 
 
 
 


