
Learning to identify quality articles on Hacker News

Ben Rudolph
Computer Science

Stanford University
brudolph@stanford.edu

Abstract

The goal of this project was to create a website classifier
for Hacker News. Hacker News (news.ycombinator.com)
aggregates articles and has users vote them up. If the
article gets enough up votes in a certain amount of time,
then it makes the front page of Hacker News which
displays 30 articles at a time. Hacker News uses a
ranking algorithm which leverages time since submission
and number of up votes, which takes the form of:

Where G is the gravity, P is the number of up votes and T
is the time since submission.

If the ranking is among the top 30, then it is displayed on
the front page. If an article gets displayed on the front
page, then the site receives thousands of hits, so one can
see it being beneficial to make it on the front page. This
was the basic motivation behind my project. Given an
article, could I predict if it was going to make the front
page?

1. Introduction

 Website classification has been done many times
over on the Internet, but usually with more predictable
categories. For Hacker News, there are a lot of intangible
factors that go into making the top 30. For instance, a
group of friends can force their article to the top 30 by all
up voting the article themselves, and once the article has
reached the top 30 it gets viewed many more times and
thus has a greater chance of getting even more up votes.
An article can usually make the top 30 if it gets 4 to 5
votes within an hour, so it's not implausible for a group to
artificially push their article to the front page. Another
factor to consider is luck. Not every article that is
submitted gets read and an article’s lifetime on the “new
submission” page is very short (depends on how many
articles are being submitted during that time, but it’s
usually around an hour). Theoretically, an article can be
worthy of the top 30 but is only read by a small subset of
the users that are interested in the topic. These are flaws
in the Hacker News system itself, and thus will be very
hard to predict when situations like stated above will
arise.

2. Challenges

2.1 Coolness Factor

 A lot of articles make the top 30 not because they
have really good content but rather the author has
made/coded a neat project and other people like it. As far
as machine learning goes, it will be hard to define the
usefulness or smartness of an application. One partial
solution I came up with was identifying projects from
non-projects. Some articles begin the title with 'Show
HN:', and I used that as an indicator to tell if the article
was a project or not.

2.2 Parsing Images/figures:

 This was another stumbling block since if a
document contained just a single image or figure, I had
no way to get anything from the document. At one point I
tried counting the number of images in the article but this
was useless since it was hard to distinguish between
pictures for ads and pictures that actually displayed
information.

2.3 Identifying Trends

 Dealing with trends in the technology world was
another difficult challenge. Hacker News operates a lot
on those trends. For example, when Steve Jobs died, all
30 articles of the front page were about him. Or
sometimes something new in the tech world happened
and that article made the front page. How to differentiate
between an article about something that just recently
happened and one that didn't was a tough problem to
solve.

3. Approach

3.1 Logistic Regression

To tackle this assignment I decided to use logistic
regression because, ultimately, I was more familiar with
it and wanted to be able understand my results better.
Once I got comfortable with my data using logistic
regression, I tested my model on a support vector
machine. One downside I found by using logistic
regression was the time it took to run in comparison to

the SVM. Since my project dealt a lot with text, I found
myself having very long feature vectors which did not
scale well with logistic regression.

3.2 Choosing a feature vector

 As with most machine learning projects, choosing a
good feature vector is paramount, so I decided to see if I
could predict whether an article could make the front
page. I setup a python script that tested me on the data
that I had collected – it would give me a link url and then
I would input yes or no depending on whether I thought
the article would make the front page.

 I proceeded to open approximately 100 links and
read the article. I took notes on the articles to try and
prepare a usable feature vector. The first thing I noticed
though was that it was actually very hard for me to
predict accurately. Throughout the testing I found that
keywords were essential to the likelihood of making the
front page. Another feature I noticed was that almost all
the articles came from the same pool of websites. While I
was doing the testing, I became increasingly aware of the
challenges I presented in the previous section. For
example, two articles came from Github.com and they
were both programming projects. One made it to the
front page and the other one did not. As a human, I was
able to tell which one was going to make it since I saw
the practicality and usefulness in the program; however I
wasn't sure how to represent this as a feature. Lastly, I
noticed that some articles contained a lot of pictures
while others did not, while this did not directly help me
predict if the article was front page material or not,
perhaps there was some sort of pattern that a machine
could pick up on that I could not.

3.3 The Feature Vector

 After much iteration, I ended up with this feature
vector:

 AskHN: <0 or 1> – This indicated whether or not the
article was a question to the Hacker News community or
an article. Hacker News question were denoted by 'Ask
HN:' in the title

 ShowHN: <0 or 1> – This indicated whether or not
the article was a project built by the submitter. Often
users would submit their projects with 'Show HN:' in the
title to indicate that they built this
website/product/application.

 Hour: <0-23> – This indicated the hour in which the
article was submitted. This turned out to be a pretty
important feature because during some hours there were
a lot of submissions and it made the article less likely to
make the front page.

 WordCount: <Positive Integer> - This was simply
the number of words in the article.

 TitleWordVector: <Array of 0s and 1s> - This was a
vector of length 400. I computed the 400 most frequent
words that were in the title and if the article in question
contained one of those words, then I would insert a 1, if
not then a 0.

 DocumentWordVector: < Array of 0s and 1s > - This
was a vector of length 500, like the title vector, if the
document in question contained one of the top 500 words
then I would record a 1 in that position.

 NounPhraseVector: < Array of 0s and 1s > - This
was also a vector and was of length 500. It contained
noun phrases from the document (had to have a length of
at least 2 words). Same strategy used in previous vectors.

 NamesVector: < Array of 0s and 1s > - This vector
was 100 long and contained names from the article. Same
strategy used as in previous vectors

 ComheadVector: < Array of 0s and 1s > - Top 100
comheads/domains, if the article was one of the domains,
then I’d mark a corresponding 1 in the entry.

4 Data Preparation

4.1 Data Collection

 To keep track of all the submitted articles I polled
the stream of newly submitted articles every 5 minutes. I
stored information on submission time, title, domain, url,
and all the text in the article. I would also poll the front
page of Hacker News every 5 minutes; if one of the titles
that I had in my database was also on the front page than
I would mark that example as having made the front
page. This made for a very nice dataset, examples were
all marked as either front page or not.

4.2 Data Pre-processing

 Analyzing the text was another issue. The first
obstacle to overcome was getting rid of all superficial
text. It was easy enough to get rid of html markup using
an html parser, but I only wanted to get text that involved
the article. As a heuristic, I only took text from html
blocks that had a 2:1 text to markup ratio. In other words,
a markup tag like <p>Lots of text</p> would be selected
but something like ad would not since
there were more characters in the mark up than the actual
text. This tactic helped filter out ad links and menus.
However, I think it could have been improved even more
if I created a machine learning algorithm for extracting
important text from an article, but that's another project.

http://www.somepage.com/

 Never having taken a natural language processing
class, this was the most challenging for me. Thankfully,
Python's nltk (natural language toolkit) was very useful.
After stemming and stopping all words in the text, I then
broke the article into sentences. I then tagged all the
words in the sentence with their part of speech. This
served two purposes. One was to only count words that
were nouns toward the word frequency vector and the
other was to find noun phrases. To locate noun phrases I
created a small regex which checked for a demonstrative
followed by an optional adjective and then one or more
nouns.

5 Results

5.1 Findings

 After a slow start I was able to reach some
conclusive results. See table 1 (last page) for a record of
my results and their statistics (I didn’t post accuracy
since the data was skewed):

 In the end, my F1 score hovered around 40-60 which
I was happy with considering that there were a lot of
cases I didn’t know how to account for.

6 Future Improvements

6.1 Image Processing

 As a possible extension, I wanted to somehow
incorporate images into the feature vector. I attempted
simply counting the number of images on a webpage, but
this wasn’t very helpful because of all the ads and other
images that were not related. Perhaps developing a
machine learning algorithm to decide whether an image
is relevant to a document would help get a more accurate
perception of how images contribute to the article.

6.2 Aesthetics

 I also wanted to look into seeing how the aesthetics
of a document affected whether people liked it or not. I
was thinking about trying to determine the most used
colors in a document to see if color affects readers in
some unconscious fashion. Also the font might make a
difference as well.

6.3 Text Analysis

 As far as text analysis goes, I was thinking that as
well as determining names in a document I could also
determine products and companies using a list of current
technology companies and products. Lastly I wanted to
be able to distinguish between scholarly, fun, and blog
articles. I think this too would require a machine learning
algorithm, but it would be interesting to see if it helped

classify front page articles.

6.4 Trends

 Dealing with trends was a difficult issue and I’m not
sure that only using the past 3 days of data was an
adequate solution. For the future it would be interesting
to add a sort of gravity to each feature. That is, given the
time since submission somehow reduce the importance
of its features. I’m not sure how I would implement this,
but it might help better predict trends.

7 Applications

7.1 Web Application

 I built a small web application (hnpredict.com) to
apply the machine learning algorithm. It was interesting
to build because it presented its own set of problems.
Manipulating matrices in Octave is one thing, but storing
them in a database and using them in a less mathematical
language is a bit of a challenge. It proved quite useful to
use a NoSql database like MongoDB to store my theta
vector. Also, creating the feature vector given a website
and URL was very time consuming. These are some
things that I would need to take in consideration before
implementing a machine learning algorithm for a web
application. It’s impractical for real-world purposes to
take a minute processing and creating a feature vector.

7.2 Other Applications

 The machine learning algorithm to predict front page
articles can be applied to other news sites other than
Hacker News. Many websites like Reedit and Digg have
much the same setup and could be analyzed in the same
manner. I also could see this being used at news
websites; given a bunch opinion pieces written by the
outside world, they could then use the algorithm to help
select which ones to be featured on the front page.

8 Conclusion

 In the end, while I think my algorithm performed
well considering the challenges it had to overcome, I
don’t think it’s very practical. It’s too hard to predict
whether an article is interesting and will often get
confused on articles that are technology related but not
very new or interesting. The predictions that it gets
correct are often ones that are easy for the human to
predict as well. Perhaps implementing some of the
improvements mentioned in section 6 would help with
this. As it stands I would consider it a negative result and
would not use it on a regular basis to help me choose
quality articles to Hacker News.

Trial Number F1 Score Precision Recall Description of Trial

1 0.0 0.0 0.0 Initial quick test. I didn’t include noun phrases or names in
this test. Tested on rather limited data too.

2 2.9 N/A N/A Created learning and validation curves. Found that the
optimal lambda was around 50 and that I was drastically
overfitting the data with all my features and not very many
examples.

3 0.0 0.0 0.0 Added lots more data to both training and cross validation
sets.

4 3.2 75 1.6 For this trial I switched to only creating my feature vector
based on articles that were on the front page in hopes of
defining what a good article is more concretely.

5 7.6 30.7 4.32 Didn’t change anything except I started to experiment with
changing the threshold. I moved the threshold down from .5
to .3.

6 14.8 8.7 50 Added noun phrases and name vectors! Had to drop my old
database so I didn’t have very many examples in this trial.

7 68.1 76.2 61.54 More data, and cut down the length of the document word
and title word vectors.

8 64.7 61.11 68.75 Made a function to optimize threshold. I believe the reason
the F1 score is falling is that I’m beginning to have too much
data.

9 25.0 20.83 31.25 Same data and features but tried running it on a SVM.

10 21 50.0 13.33 Even more data, I need to deal with the fact that articles that
would make the front page 2 weeks ago would not make it
now.

11 64.7 56.84 75.0 Only take data from the past 3 days to deal with trendiness of
topics.

