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Abstract

Operation IceBridge is a NASA funded survey of polar sea and land ice consisting
of multiple instruments installed on an airborne platform. The Snow Radar [Leu09]
instrument is a wide-band Frequency Modulated Continuous-wave (FMCW) radar that
has been deployed on IceBridge missions. The properties of this radar (frequency, band-
width, etc.) allow for the detection of the air/snow, snow/ice, air/ice, and air/water
interfaces in the radar backscatter return data. If these interfaces can be extracted
from the backscatter data, it will allow one to determine both the distance measured
from the aircraft to the surface, as well as the thickness of the snow covering the ice
sheet. Retrieving snow thickness will yield important information about the snow pack
covering polar ice sheets, allowing for a better understanding of the state of Earth’s
cryosphere. This paper examines the implementation of a Support Vector Machine
(SVM) learning algorithm to extract the various interfaces from the raw radar data.

1 Motivation

The radar backscatter data is presented as measurements of return power as a function of
time or range. Although the interfaces do show up as peaks in the radar return data, pre-
liminary analysis of the data has shown that simple peak-finding methods are insufficient in
accurately predicting which peaks are the different interfaces. Noise, signal attenuation (es-
pecially by thick snow), surface topography, and other geophysical properties all contribute
to masking the interface and making detection more difficult. To add to the difficulty, an
accurate layer tracker must have the ability to distinguish the following interfaces:

1) Air/Snow (AS)
2) Snow/Ice (SI)
3) Air/Ice (AI)
4) Air/Water (AW)
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Each of the above surfaces has different backscatter characteristics that are not easily
identified by just the power of the peak in the range line. The power of nearby points, in both
range and time, must be used to adequately identify the interface. The relationship between
the peak of interest and the nearby points, however, are often very subtle and difficult to
explicitly determine. Example echograms for the various interface types are shown below.

(a) Radar echogram showing areas
that have no snow (the dark areas
near 0.9 km and 4.5 km) and areas
that have both snow and ice inter-
faces (the light areas where two in-
terfaces are visible).

(b) Individual range line of an
echogram. In an ideal case, the SI
interface will be seen as the highest-
powered peak, with the AS interface
being of lower power and appearing be-
forehand.

Figure 1: Example of raw radar data.

The difficulty in determining the explicit factors that describe each interface type is to
be handled by implementing an SVM supervised learning algorithm to classify the peaks of
a given range line as being one of the identified interface types, or no interface at all (a peak
caused by noise, sidelobe interference, or other factors). Other instruments on the airborne
platform (LIDAR and digital imagery) can be used as aids in training a given data set.

2 Support Vector Machine

As mentioned, a Support Vector Machine [Ng11] will be applied to this problem. The general
method is described here. Classification will be performed on the various peaks in a given
range line. In training, the 6 most powerful peaks of a given range line will be extracted.
This number was achieved by analysis of several radar files, where it was determined that in
general any other peaks beyond this number are either noise or cannot be readily classified.
Each of these peak will be analyzed and identifed as being one of the interfaces described,
or being no interface at all. Once a peak is identified, a feature vector will be formed from
the data and stored. Once a certain number of peaks are classified, the SVM will be trained
on the data and used to classify the rest of the radar data.
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LIBSVM [CL11], a readily available software package, was employed. LIBSVM provides
a robust solution to this problem, with a MATLAB interface that allows the data to be
trained, processed, analyzed, and visualized with ease. A model for each type of interface
was created, and every peak being analyzed was predicted with each model. Once predicted,
the interface classification that returned the highest decision value was used to classify the
peak.

3 Feature Selection

As illustrated in figure 1, it is clear that points surrounding each peak are required to properly
classify it. Not only are the points in the same range line of interest, but so are the points in
adjacent range lines. This is because the radar footprint is sufficiently large so nearby range
lines should be well correlated in terms of interfaces they detect. However, noise should not
be well correlated between range lines, so this should aid in rejecting peaks that are caused
by noise or other undesired sources.

The ideal number of features to use was achieved by performing training and test error
analysis using different numbers of features that are processed in different ways. Because
of the large amount of data, computational efficiency must be considered. A model could
be generated with a large number of features, but this would result in unacceptably large
processing times. Some classification errors are tolerable, as additional filtering of the data
will be performed that should reduce error rates.

(a) SI Interface (b) AS Interface

Figure 2: Training and test errors as a function of the number of features (to the left
and right of a given peak). A value of 25, for example, means that the 25 points to
the left and the 25 points to the right of the peak are used as features for the model.

Figure 2 shows the behavior of the model as the number of features is increased. As
expected, if only a small number of features are used, the model is not very good at making
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predictions. Analysis shows that little improvement is seen beyond using 25 data points to
the left and to the right of a peak. For this reason, 25 features will be used. Similar behavior
is seen for true-negative, false-positive, and false-negative results, across all interface types.

In order to further improve computation efficiency by reducing the number of features in
the model, analysis was performed by averaging some features together. One motivation for
this is that because the snow depth is not constant, averaging together a series of features
will ”bring together” various return profiles, which should both simplify the model as well
as possibly giving better performance. Also, averaging points together may help with noise
rejection. It was determined that averaging would be done on a larger number of points the
further away from the peak the feature lies, also under the assumption that the further away
from the peak, the less important a feature becomes because the points start to decorrelate
more. This was performed by grouping together points by using a quadratic function f(x) =
(cx)2, where c is the ”feature mean coefficient” and x is the number of points away from the
peak. This gives a pattern that groups together points in increasing numbers the further
away from a peak they are.

(a) SI Interface (b) AS Interface

Figure 3: Training and test errors as a function of the feature mean coefficient.

Figure 3 shows the effect of averaging the features together. Training error gets somewhat
worse, but not by much, while test error remains about the same. A somewhat large increase
in error is noted after a c value of 1.2, so this is the value that is used. Performance remains
good, while computational efficiency is greatly increased by reducing the size of the feature
vector from 357 elements (51 points along 7 range lines near the peak being analyzed) down
to 49 elements.
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4 Results

Multiple radar data files for a specific campaign were processed with the SVM model trained
in the manner described. Examples are shown in figure 4. 56.08% of the 430,000 measure-
ments were determined to have been successfully tracked. Most files had better tracking
statistics (in the 70%-90% range), but the overall average is brought down by some files
having substantial data dropout (for often unknown reasons), rather than poor performance
by the SVM.

(a) Example file showing the detection of
AI (green) and AW (cyan), resulting in no
snow depth.

(b) Example file showing the detection of
the AS (green) and SI (blue) interfaces,
where snow cover is seen.

Figure 4: Two radar files showing the successful tracking of the various interface
types.
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