
Forecasting Video Analytics
Sami Abu-El-Haija, Ooyala Inc (haija@stanford.edu; sami@ooyala.com)

1. Introduction
Ooyala Inc provides video Publishers an end-
to-end functionality for transcoding, storing,
and delivering videos to a wide set of devices.
Publishers can easily upload their video
content and make it available on websites,
smart phones, tablets, Facebook Applications,
and Google TVs. In addition, publishers can
access a wealth of Analytics data on how their
video content is being watched.
Ooyala offers daily-aggregated Analytics. For
example, the number of plays a video received
on a given day. The aim of this research is to
analyze historical video analytics, model the
time-series of video plays, and predict the
number of plays that a video is going to
receive over the next two days.
We begin this paper by describing the source
of our data, and our proposal for reducing the
inherit noise in the data set (Sections 2 and 3).
Afterwards, we describe the various models
we explored, and reason our choices (Section
4). Then, we compare the accuracy achieved
by the models (Section 5). Lastly, we suggest
future work based on our insights and
conclude our findings (Sections 6 and 7).

2. Data sets
The goal of this research is to predict analytics
at a daily granularity (Analytics granularity
currently offered to our publishers). However,
we construct our models on data more granular
than a day. Our intuition tells us that sub-day
patterns will allow us to better-predict
analytics for day granularities. Therefore we
ran MapReduce jobs to accumulate data at 3-
hour granularity. Hence, one day consists of
8 buckets.

3. Gaussian Smoothing
With 3-hour buckets, the number of plays for a
video across time is noisy.

Figure 1: Video A – real plays (!)

To reduce noise, we apply a Gaussian filter:

! ! ! ! ! − !
!

∗ !!

Where !! is the observed (real) number of
plays at time s, ! ! is the smoothed number of
plays, and,

! ! !
1
2! !

!"# ! !
! !

!!)

For computational efficiency, we set W(x) to
approximate a discrete Gaussian distribution
with mean 0, that hard-drops to 0 for |x| > 2,
and sums up to 1. In particular:

! !"#$%$"&'()*$$$$! !+,#$%$! !,#$%$"&-',*$
! ! +-#$%$! !-#$%$"&".(*$$$$/$%$"$012034050&$

Our models performed significantly better
when trained with smoothed data

Figure 2: Video A – smoothed plays (P)

4. Models
It is observed from the dataset that different
videos whiteness different viewership patterns.
For example, videos published by News
publishers receive a spike of interest in their
early lifetime, but the number of plays quickly
drops over time. On the other hand, long-
content videos observe more of a uniform
pattern of plays over time. In addition, it is
observed that most videos whiteness time
cycles. Some videos are more popular at night;
others are more popular during the day.

In the remainder of this section, we describe
the different models we explored. We split the
models into two categories, Per-Video Models
and Per-Publisher Models.

4.1 Per-Video Models
To overcome trend differences between
videos, these models look at each video in
isolation, fitting the model parameters per
video, where we:

1. Leave-out the last two days of the data set
2. Train the model on the rest of the data
3. Compute the error between the predicted

and the actual number of plays for the last
two days.

4.1.1 Linear Model
Here, we model " # as a linear combination of
the historical plays (" #$%, " #$&, …)

Figure 3: Time-series

!! ! ! !
! ! !!! ! ! !!

! ! ! !!! ! ! ! ! ! !
! ! ! !!! !

Where T0 is a configurable constant, and !! ’s
are the model parameters, written compactly:

! ! ! ! !
! ∗ ! !! !

! !

! ! !

To fit the model parameter ! ! for a video, we
generate training examples by “traversing”
over the historical timeline of the video. As we
want to relate plays (! !) to T0 historical values,
we start this traversal at t = T0, and for each
increment of t, we extract one training
example with features !!!! through ! ! ! ! ! and
value ! ! . We leave out the last two days of the
dataset for prediction.

Then, we compute ! ! from the learning
examples using closed-form linear regression.

Finally, the above formula relates Pt, with the
set of directly preceding P’s (! ! ! ! through
! !!! !

). In a predictive setting, the previous P’s
will be given, and if we have!!! , we can
estimate Pt. However, in addition to estimating
Pt, we would like to estimate Pt+1, Pt+2, …,
Pt+15, such that we can estimate the number of
plays a video will receive over the next 2
days. Therefore, we construct 16 models, one
model to predict each future point. In
particular, we estimate 16 !’s satisfying:

! !!! ! ! !
! ∗ ! ! ! !

!!

! ! !

! ! ! ! 0!15

4.1.2 Autoregressive Moving-Average Model
Here, we explore the classic Autoregressive
Moving Average (ARMA) time-series model
(Box, Jenkins, Reinsel, 1994) on our dataset.
The ARMA(p, q) has two components. The
Autoregressive (AR) part, parameterized by p,
is similar to the Linear Model described in the
previous subsection, which models future
values in terms of previous values. The
Moving-Average (MA) part, parameterized by
q, models latent noise in the time-series. We
define ARMA(p, q) for our data set as:

! ! ! ! ! ! ! !!!

!

!!!

! ∅! ! ! ! ! !

!

!! !

Where !’s are white noise. Here, we used the
arima() function in R to estimate the
parameters of the model [3].
Note: we dropped the intercept term from the
ARMA model by setting include.mean=FALSE.
Its presence degraded our prediction quality.

4.2 Per-Publisher Models
In these models, we train on each publisher in
isolation. Our motivation is to capture general
trends on a publisher’s videos. If we can
accurately model the general trends of a
publisher, we could predict plays on recently
uploaded videos using the publisher’s general
trends.

!"#

!"$%#!"$&#

!"$'#
(#(#(#

4.2.1 k-means clustering
Our driving intuition behind this model is to
find averages of shapes of curves that well-
describe a video publisher.
We would like to encode a segment of a time-
series as a vector, such that two vectors have a
low Euclidean distance if the shapes of their
respective segments were similar. Moreover,
we want the vector representation to be scale-
invariant. Some videos are inherently more
popular than others. Nonetheless, two News
videos, for instance, are likely to take a similar
path (e.g, the number of plays during daytime
is roughly double than during nighttime).

Figure 4: Depicting vectorization

In the vectorization process, depicted above,
we compute the vector for the segment [P1, P2,
…], where each component i of the vector is
the ratio of (10 + Pi) / (10 + P0), where P0 is
the number of plays preceding the segment.
The choice of 10, the normalization constant,
is to remove noise coming from dead videos.
For instance, if a video received 1 play in a 3-
hour window, followed by 9 plays in the next
window, followed by 1 play, could greatly
skew the general publisher’s curve shapes if
we indicated a 900% increase followed by a
900% decrease. We feel that 10 would absorb-
away vibrations when the number of plays is
less than 10, and the constant will have little
effect on the ratio of (Pi / P0) when the number
of plays is averaging well over one hundred.
In this model, we fixed the width of the
segment to be six days.
To extracting learning examples, given a
publisher, we traverse its videos’ timeseries to

produce thousands of shape vectors. Then, we
run the k-means clustering algorithm on the
vectors to find k vectors (centroids of clusters)
that well-describe the publisher. Below are
two cluster means computed for two
publishers (here, we construct a time-series
from shape vectors by reversing the
computation, setting P0 = 50)

Figure 5: Centroid for a News publisher. Many of its
other centroids looked similar with varying the peak

positions and varying width of curve.

Figure 6: Centroid for a long-content publisher, which

shows more-or-less a consistent, cyclical pattern.

In a predictive setting, we have computed the k
clusters for a publisher, and we are given a
video curve with two segments: a known,
filled segment, and an unfilled, to-be-predicted
segment. We fix the width of the filled
segment 4 days, and the unfilled segment to 2
days, such that the total width of the curve is 6
days, matching the clusters widths. Next, we
vectorize the known segment (just like before).
Then, we choose the cluster that minimizes the
Euclidean distance between the first 3 days of
the cluster vector and the known vector.
Finally, we fill the unfilled segments accord-
ing to the cluster vector.
This model can be summarized by the pseudo-
code (applied separately to each publisher):
65789!:8;0205802<:578989=<20:#$
,&$>0?:@52$A%$>0?:@58B0!:8;0205802<:578989=<20:#$
-&$?1C2:052$A%$D<;0792!>0?:@52E$D#$
$

F50G8?:F17H2!>8G0@#$
,&2A%$>0?:@58B0!:8;0205802!>8G0@E$'()#*+*,(-) ##$
-&$?1C2:05$A%$!"#$%&! !!

! !!"#$ − ! $
(&$:2<-G7H2$A%$I@50?72:J289=K47L0M0?:@5!2E$?1C2:05#$

!"#

!$#

!%# !&#

!'#

!"#$#%"#
!"#$#%! #

!"#$#%"#
!"#$#%&#

!"#$#%"#
!"#$#'#

!"

4.2.2 Principal Component Analysis
The intuition behind applying Principal
Component Analysis (PCA) comes from
visual inspection that features of a shape
vector are highly correlated. For example, if
the number of plays is increasing between 7:00
AM and 11:00 AM, then after going through a
daily cycle, the number of plays likely to be
also increasing the next day, between 7:00 AM
and 11:00 AM.
We used PCA to reduce the dimension of the
shape vector from 48 (6 days) to 16. Then, we
ran k-means on the reduced dimensions to find
k averages. Finally, mapped the k clusters back
to 48 features for the purpose of visualization
and inspection, and they looked like:

Figures 7 & 8: Centroids after applying PCA and

mapping back to original dimensions.
It is apparent from the centroids figures above
that our application of PCA poorly modeled
our data. Most centroids looked very similar to
the ones above (noisy, with lots of negative
numbers). After this visual inspection, we
stopped our exploration of PCA to model our
data set.

5. Results
To measure the accuracy of the models, we,

1. Quantitatively measure the prediction
error over two (unseen) days that follow
the training set

2. Qualitatively, visually inspect the shape
of the predicted curve, and see the extent
it follows the true (actual) curve.

Let ! !
∗!denote the predicted plays at time t. In

addition, for notational convenience, let ! !
denote the number of plays over the first
unseen day, and and ! ! denote the number of
plays over the first and the second unseen
days:

! ! ! ! !

! ! !!"#!

;!! ! !!! ! ! !!
!!∈!

!"#!∪!"# !

Similarly, let ! !
! and !!

! be the same
summations over predicted plays (! !

!).
We define the prediction errors as:

error(1 day) = ! !! !! !
∗

!"#!!!! ,!! !
∗!

error(2 days) = ! ! ! !!
!

!"# !! ! ! ,!!!!)

Moreover, we will use a consistent legend in
plotting time-series. We will plot the portion
seen by our algorithms in blue, the predicted
line in orange, and the true (actual) line in red.

5.1 Linear Model
We set Tj’s = 2 days, yielding predictions:

Figures 9 & 10: two typical prediction curves.

Figure 11: Rare (but visible) case where the model

predicts negative numbers for a time period.

Over a set of randomly chosen videos, the
linear model produced 29.9% and 31.7%
errors on one and two day predictions,
respectively.

5.2 ARMA Model
The ARMA model had the best performance
on our data set. Some prediction graphs:

Figure 12: Prediction curves for ARMA(16, 4)

Varying p and q, average errors were:

p q error(1 day) error (2 days)
14 4 17.72% 18.25%
16 4 13.88% 15.73%
16 8 16.05% 25.04%
17 4 15.71% 18.01%
17 8 20.60% 24.14%
23 3 18.77% 20.21%

Table 1: Error averaging over a number of randomly
chosen videos

It is worth noting that some videos achieve
better predictions with smaller p and q, while
others achieve better predictions with larger p
and q. In practice, there are algorithms that can
be used to identify a good choice of p and q
(such as, Box-Jenkins method [1]).

5.3 k-means clustering
For k=100, the prediction curves look like:

Figures 13, 14 and 15: The first two are common cases;
predicted and actual curves have similar directions. The

last is a rare case, where the known (blue) portion
matches the cluster but cluster spikes on unseen section

Although in most cases, the predicted curve
and the true curve have similar shapes, the
accuracy of this model is much worse than the
Per-Video models. We ran k-means twice, for
k=50 ad k=100. Then, for a randomly selected
set of curve shapes, we computed the average
error when predicting for 1 day and 2 days:

k error(1 day) error (2 days)
50 61.93% 65.72%
100 58.42% 61.84%

6. Future Work
¥ Invest more in Per-Publisher models. Try

Mixture of Gaussians model instead of k-
means clustering.

¥ Model time-of-day and day-of-week
¥ Look at different sources of data, such as

the countries that plays are coming from,
or the viewer IDs that are watching the
modeled videos.

7. Conclusion
Our tests have shown that our Per-Video
models perform better than our Per-Publisher
predictions. However, we strongly feel that it
is possible to extract relationships between
videos within the same publisher. Nonetheless,
the described k-means and PCA approaches
were unable to capture such relationships.

8. References
[1] George Box, Gwilym M. Jenkins, and

Gregory C. Reinsel (1994), Time Series
Analysis: Forecasting and Control, third
edition. Prentice-Hall

[2] James D. Hamilton (1994), Time Series
Analysis, Princeton University Press

[3] Ripley, B. D. (2002) Time series
in R 1.5.0. R News, 2/1, 2–7. http://www.r-
project.org/doc/Rnews/Rnews_2002-1.pdf

