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1. Introduction 
Ooyala Inc provides video Publishers an end-
to-end functionality for transcoding, storing, 
and delivering videos to a wide set of devices. 
Publishers can easily upload their video 
content and make it available on websites, 
smart phones, tablets, Facebook Applications, 
and Google TVs. In addition, publishers can 
access a wealth of Analytics data on how their 
video content is being watched. 
Ooyala offers daily-aggregated Analytics. For 
example, the number of plays a video received 
on a given day. The aim of this research is to 
analyze historical video analytics, model the 
time-series of video plays, and predict the 
number of plays that a video is going to 
receive over the next two days. 
We begin this paper by describing the source 
of our data, and our proposal for reducing the 
inherit noise in the data set (Sections 2 and 3). 
Afterwards, we describe the various models 
we explored, and reason our choices (Section 
4). Then, we compare the accuracy achieved 
by the models (Section 5). Lastly, we suggest 
future work based on our insights and 
conclude our findings (Sections 6 and 7). 

2. Data sets 
The goal of this research is to predict analytics 
at a daily granularity (Analytics granularity 
currently offered to our publishers). However, 
we construct our models on data more granular 
than a day. Our intuition tells us that sub-day 
patterns will allow us to better-predict 
analytics for day granularities. Therefore we 
ran MapReduce jobs to accumulate data at 3-
hour granularity. Hence, one day consists of 
8 buckets.  

3. Gaussian Smoothing 
With 3-hour buckets, the number of plays for a 
video across time is noisy. 

   
Figure 1: Video A – real plays (! ) 

To reduce noise, we apply a Gaussian filter: 

! ! ! ! ! − !
!

∗ !!  

Where !!  is the observed (real) number of 
plays at time s,  ! !  is the smoothed number of 
plays, and, 

! ! !
1
2! !

!"#   ! !   
! !

!!) 

For computational efficiency, we set W(x) to 
approximate a discrete Gaussian distribution 
with mean 0, that hard-drops to 0 for |x| > 2, 
and sums up to 1. In particular: 
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Our models performed significantly better 
when trained with smoothed data 

 
Figure 2: Video A – smoothed plays (P) 

4. Models 
It is observed from the dataset that different 
videos whiteness different viewership patterns. 
For example, videos published by News 
publishers receive a spike of interest in their 
early lifetime, but the number of plays quickly 
drops over time. On the other hand, long-
content videos observe more of a uniform 
pattern of plays over time. In addition, it is 
observed that most videos whiteness time 
cycles. Some videos are more popular at night; 
others are more popular during the day.  



In the remainder of this section, we describe 
the different models we explored. We split the 
models into two categories, Per-Video Models 
and Per-Publisher Models. 

4.1 Per-Video Models 
To overcome trend differences between 
videos, these models look at each video in 
isolation, fitting the model parameters per 
video, where we: 

1. Leave-out the last two days of the data set 
2. Train the model on the rest of the data 
3. Compute the error between the predicted 

and the actual number of plays for the last 
two days. 

4.1.1 Linear Model 
Here, we model " # as a linear combination of 
the historical plays (" #$%, " #$&, …) 

 
Figure 3: Time-series 
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Where T0 is a configurable constant, and  !! ’s 
are the model parameters, written compactly:  
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To fit the model parameter ! !  for a video, we 
generate training examples by “traversing” 
over the historical timeline of the video. As we 
want to relate plays (! ! ) to T0 historical values, 
we start this traversal at t = T0, and for each 
increment of t, we extract one training 
example with features !!!! through ! ! ! ! !  and 
value ! ! . We leave out the last two days of the 
dataset for prediction. 

Then, we compute ! !  from the learning 
examples using closed-form linear regression. 

Finally, the above formula relates Pt, with the 
set of directly preceding P’s ( ! ! ! !  through 
! !!! !

). In a predictive setting, the previous P’s 
will be given, and if we have!!! , we can 
estimate Pt. However, in addition to estimating 
Pt, we would like to estimate Pt+1, Pt+2, …, 
Pt+15, such that we can estimate the number of 
plays a video will receive over the next 2 
days. Therefore, we construct 16 models, one 
model to predict each future point. In 
particular, we estimate 16 !’s satisfying: 
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4.1.2 Autoregressive Moving-Average Model 
Here, we explore the classic Autoregressive 
Moving Average (ARMA) time-series model 
(Box, Jenkins, Reinsel, 1994) on our dataset. 
The ARMA(p, q) has two components. The 
Autoregressive (AR) part, parameterized by p, 
is similar to the Linear Model described in the 
previous subsection, which models future 
values in terms of previous values. The 
Moving-Average (MA) part, parameterized by 
q, models latent noise in the time-series. We 
define ARMA(p, q) for our data set as: 
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Where !’s are white noise. Here, we used the 
arima()  function in R to estimate the 
parameters of the model [3]. 
Note: we dropped the intercept term from the 
ARMA model by setting include.mean=FALSE. 
Its presence degraded our prediction quality. 

4.2 Per-Publisher Models 
In these models, we train on each publisher in 
isolation. Our motivation is to capture general 
trends on a publisher’s videos. If we can 
accurately model the general trends of a 
publisher, we could predict plays on recently 
uploaded videos using the publisher’s general 
trends. 
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4.2.1 k-means clustering 
Our driving intuition behind this model is to 
find averages of shapes of curves that well-
describe a video publisher. 
We would like to encode a segment of a time-
series as a vector, such that two vectors have a 
low Euclidean distance if the shapes of their 
respective segments were similar. Moreover, 
we want the vector representation to be scale-
invariant. Some videos are inherently more 
popular than others. Nonetheless, two News 
videos, for instance, are likely to take a similar 
path (e.g, the number of plays during daytime 
is roughly double than during nighttime). 

 
Figure 4: Depicting vectorization 

In the vectorization process, depicted above, 
we compute the vector for the segment [P1, P2, 
…], where each component i of the vector is 
the ratio of (10 + Pi) / (10 + P0), where P0 is 
the number of plays preceding the segment. 
The choice of 10, the normalization constant, 
is to remove noise coming from dead videos. 
For instance, if a video received 1 play in a 3-
hour window, followed by 9 plays in the next 
window, followed by 1 play, could greatly 
skew the general publisher’s curve shapes if 
we indicated a 900% increase followed by a 
900% decrease. We feel that 10 would absorb-
away vibrations when the number of plays is 
less than 10, and the constant will have little 
effect on the ratio of (Pi / P0) when the number 
of plays is averaging well over one hundred. 
In this model, we fixed the width of the 
segment to be six days. 
To extracting learning examples, given a 
publisher, we traverse its videos’ timeseries to 

produce thousands of shape vectors. Then, we 
run the k-means clustering algorithm on the 
vectors to find k vectors (centroids of clusters) 
that well-describe the publisher. Below are 
two cluster means computed for two 
publishers (here, we construct a time-series 
from shape vectors by reversing the 
computation, setting P0 = 50) 

 
Figure 5: Centroid for a News publisher. Many of its 
other centroids looked similar with varying the peak 

positions and varying width of curve.  

 
Figure 6: Centroid for a long-content publisher, which 

shows more-or-less a consistent, cyclical pattern. 

In a predictive setting, we have computed the k 
clusters for a publisher, and we are given a 
video curve with two segments: a known, 
filled segment, and an unfilled, to-be-predicted 
segment. We fix the width of the filled 
segment 4 days, and the unfilled segment to 2 
days, such that the total width of the curve is 6 
days, matching the clusters widths. Next, we 
vectorize the known segment (just like before). 
Then, we choose the cluster that minimizes the 
Euclidean distance between the first 3 days of 
the cluster vector and the known vector. 
Finally, we fill the unfilled segments accord-
ing to the cluster vector. 
This model can be summarized by the pseudo-
code (applied separately to each publisher): 
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4.2.2 Principal Component Analysis  
The intuition behind applying Principal 
Component Analysis (PCA) comes from 
visual inspection that features of a shape 
vector are highly correlated. For example, if 
the number of plays is increasing between 7:00 
AM and 11:00 AM, then after going through a 
daily cycle, the number of plays likely to be 
also increasing the next day, between 7:00 AM 
and 11:00 AM. 
We used PCA to reduce the dimension of the 
shape vector from 48 (6 days) to 16. Then, we 
ran k-means on the reduced dimensions to find 
k averages. Finally, mapped the k clusters back 
to 48 features for the purpose of visualization 
and inspection, and they looked like: 

 

 
Figures 7 & 8: Centroids after applying PCA and 

mapping back to original dimensions. 
It is apparent from the centroids figures above 
that our application of PCA poorly modeled 
our data. Most centroids looked very similar to 
the ones above (noisy, with lots of negative 
numbers). After this visual inspection, we 
stopped our exploration of PCA to model our 
data set. 

5. Results 
To measure the accuracy of the models, we, 

1. Quantitatively measure the prediction 
error over two (unseen) days that follow 
the training set 

2. Qualitatively, visually inspect the shape 
of the predicted curve, and see the extent 
it follows the true (actual) curve. 

 

Let ! !
∗!denote the predicted plays at time t. In 

addition, for notational convenience, let ! !    
denote the number of plays over the first 
unseen day, and and ! ! denote the number of 
plays over the first and the second unseen 
days: 
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Similarly, let ! !
!  and !!

!  be the same 
summations over predicted plays (! !

! ). 
We define the prediction errors as: 

error(1 day) = ! !! !! !
∗
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error(2 days) = ! ! !   !!
!
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Moreover, we will use a consistent legend in 
plotting time-series. We will plot the portion 
seen by our algorithms in blue, the predicted 
line in orange, and the true (actual) line in red. 

5.1 Linear Model 
We set Tj’s = 2 days, yielding predictions: 

 

 
Figures 9 & 10: two typical prediction curves. 

 
Figure 11: Rare (but visible) case where the model 

predicts negative numbers for a time period. 

Over a set of randomly chosen videos, the 
linear model produced 29.9% and 31.7% 
errors on one and two day predictions, 
respectively. 



5.2 ARMA Model 
The ARMA model had the best performance 
on our data set. Some prediction graphs: 

 

 
Figure 12: Prediction curves for ARMA(16, 4) 

Varying p and q, average errors were: 

p q error(1 day) error (2 days) 
14 4 17.72% 18.25% 
16 4 13.88% 15.73% 
16 8 16.05% 25.04% 
17 4 15.71% 18.01% 
17 8 20.60% 24.14% 
23 3 18.77% 20.21% 

Table 1: Error averaging over a number of randomly 
chosen videos 

It is worth noting that some videos achieve 
better predictions with smaller p and q, while 
others achieve better predictions with larger p 
and q. In practice, there are algorithms that can 
be used to identify a good choice of p and q 
(such as, Box-Jenkins method [1]).  

5.3 k-means clustering 
For k=100, the prediction curves look like: 

 

 

 
Figures 13, 14 and 15: The first two are common cases; 
predicted and actual curves have similar directions. The 

last is a rare case, where the known (blue) portion 
matches the cluster but cluster spikes on unseen section 

 
Although in most cases, the predicted curve 
and the true curve have similar shapes, the 
accuracy of this model is much worse than the 
Per-Video models. We ran k-means twice, for 
k=50 ad k=100. Then, for a randomly selected 
set of curve shapes, we computed the average 
error when predicting for 1 day and 2 days: 

k error(1 day) error (2 days) 
50 61.93% 65.72% 
100 58.42% 61.84% 

6. Future Work 
¥ Invest more in Per-Publisher models. Try 

Mixture of Gaussians model instead of k-
means clustering. 

¥ Model time-of-day and day-of-week 
¥ Look at different sources of data, such as 

the countries that plays are coming from, 
or the viewer IDs that are watching the 
modeled videos. 

7. Conclusion 
Our tests have shown that our Per-Video 
models perform better than our Per-Publisher 
predictions. However, we strongly feel that it 
is possible to extract relationships between 
videos within the same publisher. Nonetheless, 
the described k-means and PCA approaches 
were unable to capture such relationships. 
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