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Abstract

We introduce a sequential investment strategy for investing in stock markets. The
only assumption we use is that the daily price relatives form a stationary and ergodic
process. In this sense, our strategy is universal since we do not know and do not
attempt to know precisely the exact statistics of the underlying market. We provide a
few empirical results to show the performance of this strategy.

1 Introduction

Most investment strategies use information from the past behavior of the market to design
a portfolio to be used for the next trading period. The goal is to maximize the wealth in the
long run with the minimum knowledge of the underlying distributions of the stock prices. In
this project, the only assumption we use is that the daily price relatives form a stationary
and ergodic process. In this sense, our strategy is universal since we do not know and do not
attempt to know precisely the exact statistics of the underlying market. It has been shown
that there exist universal strategies that achieve the same asymptotic growth rate as if we
had the full knowledge of the statistics of the underlying market.

2 Mathematical Setup

We consider a market of d assets and define the market vector x as:

x = (x(1), x(2), ..., x(d))T ∈ Rd
+

x is vector of d nonnegative numbers representing the price relatives of the assets for a given
period. More specifically, the j-th component x(j) ≥ 0 of x expresses the ratio of today’s
closing price to previous day’s closing price for the asset j. Hence, x(j) is the factor by which
capital invested in the j-th asset grows during the trading period.
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At the beginning of each period, the investor diversifies his capital according to a portfolio
vector b:

b = (b(1), b(2), ..., b(d))T

where the j-th component b(j) denotes the proportion of the capital being invested in asset
j. During our analysis we assume that short selling is prohibited, this means that elements
of b are nonnegative. We also assume a self-financing strategy which leads to the condition
1Tb = 1, where 1 is a vector of all 1’s. With these notations, it is clear that if the investor’s
initial capital is S0, then at the end of the first trading period his wealth is:

S1 = S0b
Tx

We represent the evolution of market in time by a sequence of market vectors x1,x2, ... .
To ease the notation, for j ≤ i, we abbreviate by xi

j the array of market vectors (xj, ...,xi).

Hence, at the beginning of the i-th trading period, our available history would be xi−1
1 . The

portfolio vector chosen by the investor at the beginning of the i-th trading period depends
on the past behavior of the market. To emphasize this dependence, we denote this portfolio
by b(xi−1

1 ). Starting with an initial wealth S0, after n trading periods the investor’s wealth
is:

Sn = S0

n∏
i=1

bT(xi−1
1 )xi = S0e

nWn(B)

where Wn(B) denotes the average growth rate:

Wn(B) =
1

n

n∑
i=1

log(bT(xi−1
1 )xi)

For the first training period in which there is no market history available, we let b to be a
uniform portfolio. The goal is to maximize Sn, or equivalently Wn(B).

Two different approaches have been considered in the literature for maximizing Wn(B).
The first approach does not impose any stochastic model for the evolution of price relative
vectors. Hence, the results hold for all possible sequences xn

1 . The second approach assumes
the market vectors are realizations of a random process and describes a statistical model for
their evolution. In this case, one is always able to find an optimal investment strategy based
on the distribution of the process which maximizes Wn(B). However, describing a statistical
model which accurately captures the behavior of market vectors has been proved to be an
extremely difficult task.

In this project we adopt a compromise between these two approaches. We assume that the
market sequence is a realization of a random process, but we do not assume any parametric
structure on the distribution of this random process. In fact, the only statistical assumption
we make is that the market process is stationary and ergodic. This allows us to deal with
arbitrarily complex distributions, as long as they are stationary and ergodic.

Our proposed strategy allows a flexible way of extracting information from the history of
the market. We denote the sequence of our portfolios by BK = {bK(.)}. BK is constructed
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as follows. We define c > 0 to be a constant. Let y and z be two arbitrary vectors with
arbitrary dimensions. We say y and z are similar to each other if and only if:

‖y − z‖ ≤ c (1)

To determine our portfolio on the n-th trading period, we scan the available history of market
vectors xn−1

1 and collect those vectors that followed a vector similar to xn−1 in a history list,
denoted by h . After scanning the whole history, we design our portfolio for the next trading
day by solving the following optimization problem:

bK(xn−1
1 ) = arg max

b∈4d

∏
xi∈h

bTxi (2)

where 4d is the probability simplex. If h is empty, we choose our portfolio to be a uniform
portfolio.

REMARK It is important to choose a suitable value for c in (1) such that the num-
ber of nearest neighbors is neither too high nor too low. Also note that the optimiza-
tion problem in (2) could be converted to a convex problem using a simple trick. Define
A = diag(a1, a2, ..., an) to be a diagonal matrix, where n is the number of elements in h.
Now maximizing log det(A) subject to the set of constraints bTxi = ai for 1 ≤ i ≤ n is
an equivalent convex problem. In practice, instead of maximizing log det(A), we maximized

(det(A))
1
n (which is still a convex problem) and used cvx to solve the problem.

3 Numerical Results

We tested this strategy on two different sets of financial data. In both cases the initial wealth
S0 is 1 dollar. The first data set includes daily prices of 10 stocks along a 22-year period
(5651 trading days) ending in 1985. Figure 1 shows the wealth achieved by BK during this
period. We used the value c = 0.050 for our simulation. The final wealth is 5832 dollars,
equivalent to a 47.3 percent annual interest rate.

The second set of data includes daily prices of 100 stocks along an 8-year period ending
in December 2010. We used the value c = 0.1826. The final wealth is 36.1 dollars, equivalent
to a 56.6 percent annual interest rate, as seen in Figure 2.
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Figure 1: Plot of achieved wealth versus number of trading days for a basket of 10
stocks.

Figure 2: Plot of achieved wealth versus number of trading days for a basket of 100
stocks.
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