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I. Introduction 

 
The typical model of cortical processing assumes that it an inherently noisy, possibly degenerate, process.  

However, recent findings1have shown that individual cells in the primary auditory cortex of a rat could be described as 
a binary process, rather than a highly variable Poisson process.  As Illustrated in figure 1, picturing neuron E and F’s 
response in different trials to the same stimulus, a1 neurons are highly selective and consistent in their responses.  

 

               
Neural responses of neuron E and F to stimulus KF1 

 
Given the hypothesis that neural responses form consistent representations of the stimulus we endeavor to 

form a deterministic mapping between the neural responses to auditory stimuli. 
A number of coding schemes such as rate coding, temporal coding, population coding, and sparse coding 

have been proposed to explain how continuous neural responses represent information.  Recently in an extreme version 
of temporal coding Patrick Suppes et al.2 found that they were able to distill the neural representation of spoken words 
through averaging the spike data across large swaths of auditory cortex, and then representing this signal with the 
superposition of a few sin waves.  We endeavored to compare this method to a population coding scheme where the 
origin of the neural signal is leveraged as a feature. 

We used the attached single cell recordings of primary auditory cortex neurons of the Sprague Dawley Rat 
made available through the Collaborative Research in Computational Neuroscience (CRCNS)3 organization’s auditory 
cortex data set The first step was to process the data, pictured raw for one penetration below.                        

 
To do this, we identified the location of each trigger in the neural response in order to divide the neural 

response into two portions: the spontaneous response (background neural signal) and the evoked response from the 
auditory trigger. We filtered out the neural signals that did not pertain to the trigger response, and isolated the portions 
of the signal that might have been induced by our trigger.  
 From our preprocessing we could determine whether the characteristic frequency for each penetration was 
unique, as we would expect given previous findings.  We found that the characteristic frequencies were distinct as 
pictured below in the side-by-side tuning curves (t=8.77, P < .001).  

properties, such as mean intensity, fluctuate over time). These
properties distinguish natural sounds from conventional artifi-
cial stimuli, which are either deterministic stimuli (such as mov-
ing ripple stimuli) or stationary random stimuli (such as random
chord stimuli). The spectrograms of three example sections of
natural sounds used in this study are shown in Figure 2D.

Response reliability
Responsive neurons typically showed a combination of both
spontaneous and stimulus-locked voltage fluctuations in re-
sponse to natural stimuli (Figs. 1E, 2E). Both spontaneous and
stimulus-locked responses are presumably attributable to the

synchronous arrival of many postsynaptic
potentials (PSPs) (Wehr and Zador,
2003). If spikes had not been blocked
pharmacologically, the larger PSPs would
likely have triggered spikes. With, at most,
two to three large PSPs per second, the
activity of these neurons is temporally
sparse.

Neurons sometimes showed striking
trial-to-trial reliability, consistent with the
high trial-to-trial reliability of spike count
reported previously (DeWeese et al., 2003).
This is particularly evident in the central
panel of Figure 2E, in which the responses
to repeated presentations of the same
stimulus are nearly identical. Reliability
was stimulus dependent; the same neuron
was less reliable for a different stimulus
(Fig. 2E, right panel).

To quantify the amount of stimulus-
locked activity, we compared a single re-
sponse trace with the average over the re-
maining trials. A sample comparison (Fig.
3A; same data as in Fig. 2D,E, left panel)
shows that the deviations of a single trial
from the average primarily involved the
fine structure of the voltage fluctuations.
To quantify this observation, we com-
puted the coherence function between the
single and average traces. The coherence
measures the frequency-resolved correla-
tion of two time series (see Materials and
Methods) and ranges from zero (absence
of stimulus-locked activity) to one (when
all traces feature the same stimulus-locked
excursion in membrane potential). The
average coherence functions correspond-
ing to the three examples in Figure 2, D
and E, are shown in Figure 3B. These func-
tions demonstrate the typical range of
stimulus-independent background activ-
ity observed in the experiments. All cells
feature reliable activity for lower frequen-
cies (!40 Hz). However, when presented
with the right stimulus, the coherence in-
creased dramatically; the light gray curve
(BM) shows the coherence corresponding
to the central panel in Figure 2, D and E.

Response reliability also differed from
cell to cell. Figure 3C displays the average
magnitude of the stimulus-independent

activity. To compute this quantity, the variance of the response
about its mean was averaged over time (see Materials and Meth-
ods). In all cases, the average magnitude of the noise (1–5 mV) is
small compared with the magnitude of the PSPs (10 –30 mV),
emphasizing the overall reliability of the responses.

Spectrotemporal receptive fields
In the next step, we characterized the linear component of the
stimulus–response relationship. This task is considerably simpli-
fied when the stimulus is represented by a spectrogram (Cohen,
1995; Klein et al., 2000) (see Materials and Methods) as in Figure
1, C and D, and Figure 2D. The spectrogram provides a rough

Figure 1. Responsive and unresponsive cells. We used in vivo whole-cell methods to record subthreshold responses of single
neurons in auditory cortex A1. Action potentials were blocked pharmacologically. A, B, Responses of two cells to conventional
pure-tone stimuli. Evoked membrane potentials are shown for an array of frequencies and intensities (the loudest tones are on the
top row). Both cells exhibited robust responses to pure tones, with typical V-shaped tuning, and had similar characteristic
frequencies (CFs) of 3.2 kHz ( A) and 4 kHz ( B). C, D, Spectrogram of a 5 sec segment of the call of a Knudsen’s Frog (stimulus KF).
E, F, Responses of these two cells to this sound were strikingly different. In E, this stimulus evoked robust and reliable responses,
whereas in F, after a transient onset response, the cell was completely unresponsive. The cell in F was similarly unresponsive to all
six natural stimuli tested (data not shown). G, This stimulus contained power at the CFs of both cells (arrows show CFs; colors
match traces in A, B, E, and F ). In fact, stimulus power was greater at the CF of the unresponsive cell. H, Most cells in our sample had
CFs of 1–5 kHz. Arrows show CFs of the two cells in A, B, E, and F. I, Responsiveness to natural stimuli varied across cells. Here,
responsiveness is quantified by the SD of the membrane potential evoked by natural stimuli (note that nonstimulus-evoked
activity also contributes to this measure). Arrows show the different responsiveness of the two cells in E and F.
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II. Support Vector Machines for Neural Prediction 

 
In hopes of an accurate prediction, we initially ran a SVM using the evoked period neural traces as our 

training data. We aggregated the trigger frequencies into two classes -- low frequencies and high frequencies -- and we 
then did a linear two-class SVM using the Liblinear package in Matlab. This yielded an initial accuracy of 59.1%. 

We then pursued a number of avenues to improve the accuracy of our SVM algorithm. We took the discrete 
Fourier transform of the neural trace to convert the data into the frequency domain.   Testing Suppes’ method in which 
he encapsulated the trace into a small subset of the highest amplitude frequencies, we took the five most prominent 
frequencies of the Fourier transformed neural trace.  We then ran the two-class linear SVM using this as our training 
set. In order to correct for artifacts induced by the fast fourier transform, we applied a Hamming window function to 
the result.  Training on the five highest spikes gave the same accuracy of 59.1% as training on the raw data. 

To contrast with Suppes’ averaging method we separated out the data by penetration (neuron) to allow the 
learning algorithms to do population-like coding.  Grouping responses by specific neuron improved our our accuracy to 
87.5% in the binary two-class case. We also tried using a Gaussian kernel for the SVM instead of the linear kernel. This 
was done using the LibSVM package for Matlab, and we achieved a slightly better accuracy of 91.6%. 
 

 
 

 
 
 

Up to now, we see that our algorithm can distinguish between low frequencies and high frequencies with 
fairly good accuracy. We wanted to expand our problem by separating the original 17 different pure tones into four 
frequency ranges.  Using four classes and 4 classes and 5 penetrations we first attained an accuracy of 28.3%, not much 
larger than what would be expected by chance.  With a larger data set we attained an accuracy of 37.5% using 4 classes 
and 5 penetrations, indicating that our hypothesis may have not yet converged, and that we are at least partly 
bottlenecked by the number of training samples. 

In addition to using the raw neuronal response data or the most prominent frequencies, we also tried to 
predict trigger frequency using other features. For example, we computed the running average of the response trace and 
used this running average as our training examples. Heuristically, this running average captures the trend of the 
neuronal response trace, and indeed, we attained an accuracy of 40.8% using 4 classes and 5 penetrations 

 
Tuning Property of Penetration 1 

 
Tuning Property of Penetration 3 

Summary of our binomial SVM implementations. 
Note that grouping by neurons induces the most 
significant rise in accuracy 



 
Using only three penetrations we achieved an accuracy of only 31.7% compared to the 40.8 we achieved with 

five.  Including more penetrations increases the accuracy as indicated in the graph below.   Even with the increased 
sample size (by a factor of 1.6) that was available when reducing the number of penetrations, our algorithm’s accuracy 
was better using all five penetrations.  This indicating that having multiple different neurons was more important than 
having more many training examples (even controlling for the difference in information contained in each training 
point in the two conditions.  

                    

 
Accuracy versus number of penetrations, which varies 

inversely with number of training samples 

 
          Confusion matrix using four class labels and five 

penetrations 

 
 

 
III. Experimental SVM 

 
  Even through all of our processing of the data, liblinear’s SVM was unable to properly predict the tonal 
frequency from the neural signals. Across the 17 multiclass labeling of the tonal frequencies, liblinear was able to 
predict on average 4% of the test data using hold-out cross validation. Our test error is therefore 96%, and at the same 
time, our training error is surprisingly at 0%. This suggests that we were overfitting our data. 
  It is our goal to be able to better classify this multiclass labeling of tone frequencies, and we believe that there 
exist a better algorithm to process the data and extract features from it would significantly increase the accuracy and 
reduce our problem of overfitting. Our main motivation in further processing the data comes from the fact that each 
neuron has a different tuning curve. Instead of clumping all five neuron data into one matrix, it would be more natural 
to mimic the neurons and train on each separate neuron individually, and only after do we have five separate trained 
models do we aggregate them into a single model. 
  As a result, we attempt to add a new “layer” of SVM training to our data. In our outer most layer, we have 
our original data matrix (that contains the top 5 spikes in each of the 5 penetrations in each row) split into five separate 
matrices, one for each penetration area. We then train five SVM models, one for each penetration. After training the 
model, we extract the confidence vector of each penetration, which has size n, where n is the number of total labels we 
have. Each entry corresponds to a specific label (indicated by the label vector that we extracted), and contains a real 
number. The index to highest entry in the confidence vector is read into the same index in the model label vector, and it 
is this entry in the label vector that indicates what label the SVM predicts. 
  Normally, the SVM would only output the label with the highest confidence value; however, we believe that 
valuable information is lost this way. We instead normalized the magnitude of each entry in the confidence vector to 
range from 0 to 1, and raised every term to the fifth power (as a result from trial and error) to greatly reduce the weight 
of less confidence labels while keeping the high confidence ones at approximately the same value.  We then normalized 
the labels vector such that the lowest frequency is replaced with the entry 1, the second lowest with entry 2, and so on. 
We now treat the confidence vector as a vector of weights with each weight corresponding to the same entry in the 
labels vector. We then do a weighted average of the normalized labels vector, which gives us a single number that 
indicates the best weighted guess influences not just by the most confident label, but also the second, third, and other 
less confident labels. We believe this number tells us more about each neuron’s prediction of the tone than just finding 
the most confident label. 
 
  We repeat this for every m training samples, and eventually receive five m by 1 vectors, one for each 
penetration, with each entry corresponding to the best weighted guess of that particular training sample. We merge 
these five vectors into a single aggregate matrix. This aggregate matrix has five entries per row, each corresponding to 



a specific penetration area’s best weighted guess. This matrix makes more intuitive sense to predict that the original 
data matrix because we are treating each neuron as a specific feature instead of treating each neuron’s top 5 spike as a 
specific feature. In the latter case, we would have a matrix 25 entries (5 neurons, 5 spikes each), but this is actually five 
groups of five unordered features. libSVM cannot distinguish between ordered features and these unordered features 
within each penetration area, and thus we believe is a flaw in predicting the tonal frequencies. 

                                                   
  As a result, our accuracy significantly improved from 4% to a peak of 30%. We believe this result to be 
considered impressive, as we are trying to classify 17 different labels from a sample of 80 training sets, where 56 of 
them are training samples and 24 are tests. That means on average we have three training samples per label, and this 
layered SVM was able to predict the correct label one fourth to one third of the time. Our testing error increased from 
0% to an average of 35%, which indicates that we are no longer overfitting our data. 
  Although the numbers are still low in an absolute scale, we believe that it is due to the bottleneck of the 
number of our training samples. We attempted to further overfit and underfit the data with other various features, 
including the Gaussian kernel, and all returned with either the same or less predictive power. This idea is further 
supported by the fact that if we reduce the number of distinct labels (as in demarcating them into intervals, e.g. high 
frequencies and low frequencies), our accuracy significantly improves. Without this layered SVM, our accuracy of a 17 
multiclass label is 4%; with a multiclass of 3 labels, our accuracy averages 40%, and with a binomial label, our 
accuracy rises to above 90%. 
 

IV. Neural Networks 

 



Confusion Matrix for Neural Network 
 

 A standard three-level, feed-forward, back-prop neural network was also used to classify the neural signals.  
A number of different feature schemes were used (each representing a different way of coding the neural data).  The 
best network used a variant of a standard running-average measure of the membrane potential, taking into account the 
origin of the signal (which neuron the signal was from).  This neural nework had an average training error of 40.  The 
confusion matrix for this network is shown below.  The comparable training and testing errors indicates that the 
algorithm is able to generalize well, which was not the case with alternative coding schemes.   
 

V. Conclusion 
 

Consistent with previous findings we determined that different penetrations in A1 had unique characteristic 
frequencies, and their tuning curves were determined. First in a test of Suppes’ theory we averaged across neural 
signals and represented the responses as the primary frequencies of the spectral decomposition and used these 
frequencies to predict the stimuli that generated the neural responses.  This method was unsuccessful at predicting the 
stimuli.  Utilizing the unique characteristic frequencies of each penetration is a population code yielded significantly 
better results, and characterizing the neural trace’s with a modified running average was more useful than the five best 
frequencies of the spectral decomposition.  All neural signal coding schemes were used to characterize the neural 
response in order to predict the stimuli that elicited them with both support vector machines and neural networks.  As 
more data and penetrations were added the results of both algorithms increased indicating that with more penetrations 
and data a better estimate of the initial stimulus is possible. 
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