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Abstract 
The goal of this project was to detect adult websites and pages that are not safe for kids. We use five 
different techniques. We create an adult vocabulary and use a composite classifier formed of multiple Naïve 
Bayes classifiers to classify pages based on url, title, keywords and content. We use hue, saturation and 
histogram of gradients to train random forests, different boosting classifiers and MLP on boxed images for 
local image classification. The intent is to then use a Viola-Jones or Haar approach to classify images 
globally. We show an edge-detection technique that works better than Canny’s for some images. We show 
an extension to Markov chains that can help detect edges. The intent is to use classifiers such as SVMs with 
Gaussian kernels to use edge information in detecting body parts. Lastly, we propose AdultRank, a ranking 
metric that serves as an indicator of the adultness of a page. All the techniques together can be used 
effectively to detect adult web sites and pages. The only overlap this work has with previous related work is 
in image recognition using the features we have used and edge detection techniques.

Introduction 
Website classification is an old problem. Internet Explorer 

labels websites as phishing and malware. Google leaves 

out malware sites from its search results. The goal of this 

project was to build a classifier that can classify websites 

and web pages as adult, i.e. sites and web pages that are 

unsafe for kids. 

Applications of this classification are many. Parents don’t 

want their kids exposed to adult content. Some adults find 

porn images offensive. Some governments ban porn sites 

and have an ongoing requirement to detect them. Many 

porn sites have a malware payload and install rootkits, 

adware, spyware and other viruses, so guarding against 

them is an additional safety measure. 

In general, sites and pages could be classified as adult sites 

based on many factors such as adult images, sexual 

content, violent content, racist sentiments, extreme 

radical views etc. The scope of this project is limited to the 

first two categories. We try to classify pages based on 

metadata and try to find good classifiers for adult images. 

Video classification was out of scope for this project but 

can be done by analyzing individual frames. We also 

extend Markov’s model, propose a ranking metric 

AdultRank and propose a new convolution filter for edge 

detection. 

Strategy 
We employ three main techniques: image analysis, text 

analysis and ranking. For text analysis, we inspect page 

title, keywords, url and content. For image analysis, we use 

different image recognition techniques. The OpenCV 

package was used for image recognition and ML classifiers. 

For ranking, we propose AdultRank, a ranking metric 

similar to PageRank. 

1 Url Text Classification 

1.1 Url Features 
The following metadata of web pages were used for adult 

classification: 

 Meta tag: “rating”. There are some standards 

that sites can use to indicate adult content but 

none that we saw use the “rating” meta tag. If 

the rating tag is found to be adult or restricted, 

the page is classified as adult. The code was not 

included in the final toolset since this analysis 

can be done independently without using 

machine learning techniques. 

 Title: if the page title contains an adult word, the 

page is classified as adult. 

 Url: if the page title contains an adult word, the 

page is classified as adult. The chosen 

implementation is naïve: it looks if the words 

from an adult dictionary exist in the url as 



substrings. A proper implementation would 

parse the url into words with an optimum match, 

take the site content into consideration and then 

do a dictionary lookup. As an example, we 

consider tit to be an adult word but this false 

positives sites with “title” in the url. As an 

example of requiring site content to be 

considered, “google” can be parsed as the 

mathematical number google, and “go” “ogle” – 

the site content would help determine which of 

the two parsings is more appropriate. 

 Keywords: adult sites and pages tend to contain 

adult words in their list of keywords for better 

search engine rankings. We search for the 

keywords in an adult vocabulary. 

 Content: Page content is an important 

determinant. Sites such as TheOnion.com are 

adult sites with expletive but non-sexual 

content. Certain blog pages and similar user-

contributed content pages (comments on news 

articles, discussion forums etc.) with expletives 

cannot be filtered out by any method but 

content filtering. 

1.2 Adult Vocabulary 
In the absence of a good online adult dictionary, we 

constructed one using a custom application and using the 

Princeton WordNet lexical database. The custom 

application allows the user to choose a source set of 

words, outputs the synonyms in each iteration, and allows 

the user to classify the synonyms as adult, gray and clean 

before proceeding with the next iteration with the adult 

synonyms. It is essential to classify the synonyms in each 

iteration, otherwise the word bag escalate to size in 

thousands due to words with multiple meanings such as 

tool. We iterated until a new iteration didn’t output any 

new words. Gray and clean words are not iterated upon. 

The final list includes two files: adult.txt and gray.txt. 

Adult.txt contains confirmed adult words that we would 

like to filter, gray.txt contains words that we would like to 

filter but can be used in adult and non-adult contexts: the 

goal is for the classifier to learn the appropriate weights on 

all words during training. 

Our vocabulary contains 106 blacklisted adult words and 

26 gray words. 

Limitations of the current classification method include 

not being able to parse different forms (plural, tenses, 

conjunctional forms) of the parent word – this can be 

easily solved by preprocessing words before looking up the 

adult dictionary. Standards preprocessing techniques such 

as stemming and skipping stop words were not used but 

ideally should be. 

1.3 Url Data 
A custom app was written that could start with a starting 

set of urls and find all the outbound http and https links 

one level deep. The app allows filtering out urls in each 

iteration and automatically filters out urls with schemes 

such as mailto and about. Schemeless urls such foo.html 

that are clearly internal links were filtered out in each 

iteration. 

Using this method, we collected 450 additional porn urls 

with a starting set of 11 porn urls and 1500 good urls with 

a starting set of 20 good urls. Both sets were manually 

checked to make sure the set contains correct data. Most 

could be easily discerned from the urls themselves. 

A custom app was written to output data files for the good 

and adult sites in csv format – 8 data files were generated: 

adult and good for title, keyword, url matching and 

content. 

Caution: many porn sites will install malware (rootkits, 

adware, spyware, viruses) on your system via drive-by 

attacks. 

1.4 Url Text Classifier 
The text classifier classifies sites and pages based on the 
features mentioned in the preceding “Url Features” 
section. 

The Text Classifier is a hierarchical composite classifier 
with a Naïve Bayes classifier each for title, url, keywords 
and content. We experimented with the individual 
classifiers – constructing the composite classifier can be 
easily done: if any of the classifiers outputs 1 indicating 
adult, the final decision is taken as ‘adult’. 

1.5 Url Text Classifier Results 
The Naïve Bayes classifier works well in almost all cases 

with high accuracy, high TP rate and a consistently low FP 

rate. Including more blacklisted words into the vocabulary 

and reducing the number of gray words improved the 

metrics, and a bigger training set and vocabulary can 

further improve the performance of these classifiers. In 

the image below, content is shown to have quite a few 

false positives – this was with 106 blacklisted adult words 

and 26 gray words. 



 

2 Image Classification 
The goal of the image classification is to find adult images. 

We tried both global classification and local classification 

with boxed images. In this form, the strategy is to train 

different classifiers to male and female organs from 

different angles. We did the project with just one class of 

adult images due to shortage of time but the intent is to 

extend the approach and train other classifiers similarly. 

In a complete classification model, we imagine training 
different classifiers for different classes of adult images 
and compositing them. The final classification would use a 
weighted sum over the learned individual classifiers as is 
done in Boosting models: 

H(x) = sign (∑ αt * ht(x)) 

where the summation is done over t = 1 to T = #classifiers 

and the αt parameters are learned using the boosting 

algorithm. 

2.1 Image Data 
Craigslist personals and other sections were used as the 

data source. A custom app was written to look for images 

in the personals section, enumerate the html img tags, 

crawl those urls and download images from the urls to a 

local folder. A second custom labeler app was written that 

allowed easy enumeration through the downloaded 

images and labeling with outputs organized by labels. 

Office Picture Manager was subsequently used to box the 

images for optimal training. 

Images were grouped into two positive classes of ~200 

images each – where one class corresponds to the frontal 

and the second class corresponds to profile view. Positive 

(adult) images were collected from the Personals sections 

of three different cities. 4000 negative (clean) images were 

collected from the baby and pets section of two different 

cities. Because of Craigslist user moderation, these two 

sections did not contain any positive images. 

Note that all boxed images were quality images. Images 

that were poor resolution, incomplete, hazy, mixed with 

other body parts or clothes, grayscale and cartoonish were 

not used for training. We did not employ background 

subtraction or other image pre-processing techniques. 

2.2 Image Features 
We mostly tried object recognition using the following 

features, but also tried edge detection. Time prevented us 

from training classifiers with edge detection techniques. 

Two new edge detection techniques were attempted as 

described below. 

Image features used include: 

 Color histograms – HSV histograms of images 

were obtained and hue and saturation 

histograms were extracted. We tried with 10, 20 

and 30 bins for hue and 32 bins for saturation. 

We experimented with hue separately as a 

feature and with {hue, saturation} {10/20/30 x 

32} bins. As an example, 30 hue bins x 32 

saturation bins produced 960 features per 

image. Hue is a good indicator of skin. 

 Histogram of gradients – the gradient at each 

pixel of an image was calculated as arctan(dy/dx) 

and mapped to one of 16 buckets in the (-π, π] 

range; finally the percentage of pixels in each of 

the 16 buckets was output as an image feature. 

This produced 16 features per image. 

The intent is to be able to run the Viola-Jones/Haar 

classifier that uses a cascaded boosted rejection model to 

detect body parts in images using the trained local 

classifiers. We trained the OpenCV Haar classifier 

successfully using the image database but the 64-bit 

OpenCV Haar classifier consistently failed to malloc at 

runtime – we will continue working on this. 

2.3 Image Classifiers 
We tested the following classifiers for classifying images: 

 Random Forests, with 100 trees, max depth of 

10, min sample count of 10, regression accuracy 

of 0, no surrogates, no priors, 15 max categories, 

forest accuracy of 0.01. 

 Boosting classifiers with max depth of 5, 100 

weak classifiers, weight trim rate of 0.95 

(samples with summary weight < 5% do not 

participate in the next iteration of training), no 

surrogates, no priors. 

o AdaBoost – Real, Gentle and Discrete 

o LogitBoost 

 



Splitting criteria used: Gini for real, MiscClass for discrete and least-squares error for LogitBoost and gentle AdaBoost.

2.4 Image Classification Results 
We experimented with different features and the two classes of images to see which classifiers fared better, to check the 

relative importance of features and to determine the optimal values of the different parameters. We tested one run with MLP 

as well – that took 1.5 hours to run. For the boosting classifiers half the set was presented as training set and half as test set. 

For random forests, 80% of the data was used as training data. In all cases, both training and test sets had a mixture of positive 

and negative data. We considered k-fold cross-validation but didn’t use it. 

 

2.4.1 Results for Hue Histograms 

As the ROC curves show the FP rate in all cases is extremely low (< 1%), with TP rates ~70% for Hue for local. We did not get 

good results with our set for global detection. Accuracy is high in all cases. This validates that hue is a good indicator of skin and 

can be used reliably for skin detection in local analysis. All boosting classifiers fared well. 

 

Figure 1. ROC Curves and Accuracy Graph for Feature: Hue, Detection: Local, Image Class: 1. 
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Figure 2. ROC Curves and Accuracy Graph for Feature: Hue, Detection: Global, Image Class: 1. 

 

2.4.2 Results for Hue+Saturation Histograms 

As the ROC curves show the FP rate in all cases is extremely low (< 2%), with TP rates with peak ~70% for Hue+Saturation. 

Results are worse for global analysis. Best models: Gentle and Discrete AdaBoost. 

  

Figure 3. ROC Curves and Accuracy Graph for Feature: Hue+Saturation, Detection: Local, Image Class: 1. 
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Figure 4. ROC Curves and Accuracy Graph for Feature: Hue+Saturation, Detection: Global, Image Class: 1. 

 

2.4.2 Results for Histogram of Gradients 

We calculated the Histogram of Gradients of images – for both full and local classification. With 16 histogram bins, we got the 

best results (TP rate 65%, FP rate 0.5%) with Discrete and Gentle AdaBoost – the other boosting models and random forests did 

not fare well. This is kind of expected; full classification is a far harder problem than local classification and we wonder how the 

histogram of gradients would fare as a feature in global image classification with large data sets. 

Results are far better for local classification with Discrete and Gentle AdaBoost returning 80%+ TP rates, < 1% FP rates and 

~98% accuracy as the chart below shows. 

 

Figure 5. Results for Feature: Histogram of Gradients, Detection: Local, Image Class: 1. 

 

2.5 New Filter: DeBrushing 
During experimentation we realized that edge detection 

would benefit from removing the internal pixels of a solid 

object. We applied a method we call DeBrushing to 

achieve this. Below we show the results of applying this 

method to some non-sexual images. The results are 

promising and seem to be more effective in edge 

detection for some images as we show below. 

The pseudo-code for this method is as follows: 

 
Define a threshold T to be in the range [0, 180] 
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For each pixel P do 
Begin 
 h1 = hue value of this pixel 

 
For each pixel Q that is in the {North, East, NE, SE} of this pixel, h2 = hue value of Q 
 
If ( |h1 – h2| < T) for each combination of {P,Q}, color P as red else color P as white. 

End 
 

 

This algorithm does not work well with RGB channels as might be expected. In essence, the above algorithm removes all pixels 

that have very similar hue values to its neighboring pixels. As an example, following is the result of applying this filter to the 

image of a dog against a grassy background, with a configurable hue threshold of 8 (two neighboring pixels are considered to be 

the same hue if their hue values differ by 7 or less). This filter removes all the grass instead of detecting the edges in them. 

  

Below is what Canny’s Edge Detector outputs for the same image – it shows the edges in the grass as well. The DeBrush filter 

performs better in this case. 

 

Below are Mona Lisa’s pictures convolved using this filter. 

 



  

  

Figure 6. From left to right: Mona Lisa (original), using Canny’s edge detector, using my DeBrush operator with a hue 

threshold of 8, using my DeBrush operator with a hue threshold of 15. 

We did not get time to use the convolved images using suitable classifiers for edge detection and using edges as image features 

but we will continue working on this.

3  Extension of Markov Model 
We propose an extension of the Markov Model to detect 

edges in images. Markov models have not been used in 

image recognition; this might be relatively slow to run but 

nevertheless is an interesting technique. 

Observation 1: The starting point of a random Markov 

walk does not matter. Irrespective of the starting point, 

one finally arrives at the optimal value functions and 

optimal policy. 

Observation 2: At any time, it is possible to deploy 

multiple agents simultaneously walking the set of states 

and bookkeeping rewards and transitions with one agent 

doing periodic policy and value function updates; one 

would still finally converge and would converge at the 

optimal value functions and optimal policy. 

We do not prove the second observation but it is easy to 

see why this would hold true. 

These two observations imply that Markov chains can be 

executed on parallel threads in a large state space. This is 

important, because we apply the Markov model in edge 

recognition in images with a large state space: the 

cardinality of the state set is the number of pixels in the 

image. Before applying to this problem, the distributed 

walk was implemented on the inverted pendulum problem 

and worked well. We make one important observation: in 

a multi-agent Markov walk where there is one thread that 

does updates to the value functions periodically, the 

update thread works slow because it performs a lot more 

computations relative to the other say 100 worker 

threads. The update thread needs to be prioritized with 

higher priority and the others as low priority for this model 

to work well. We added synchronization so the workers 

would wait for the update thread to complete before 

proceeding with the next iteration. Without this, the 

update thread will starve and not get enough time slices to 

complete one update iteration. 

 



Simplification 1 

Consider the case where the result of a transition from a 

state s upon action a is well-defined instead of a 

probability distribution, i.e. T(s,a) = s’ is well-known 

instead of being a probability distribution. 

In this case, Bellman’s equation for the optimal value 

function: 

V*(s) = R(s) + γ∑s’ maxa€A Psa(s’) V*(s’) 

Simplifies to: 

V*(s) = R(s) + γ∑s’€N(s) maxa€A V*(s’) 

Where N(s) is the set of neighbors of s – the set of states 

one can transition to from s, i.e.: 

N(s) = ,s’ | s’= T(s, a)- where the transition function T(s, a) 

gives the state reached from s on taking action a. 

This simplification comes handy in case of large state 

spaces by reducing the O(N
2
) term Psa(s’) to an O(N) term 

(N being the cardinality of the set of states), thus reducing 

computation and memory requirements. In our case, we 

used a state space proportional to the size of an image in 

pixels; the runtime memory requirement of our 

application was in the order of gigabytes before this 

simplification. 

Extension 

We build upon simplification 1 in this extension. Consider 

a case where different transitions are possible from a state 

s but the transition you want to make does not depend 

only on the value of the new state but also on a function ψ 

that is indicative of the similarity between s and s’ and the 

“reward” the transition entails. 

Consider the example we use this model in. We want to 

detect edges in an image. Given any pixel that is on an 

edge, to draw the edge you would want to transition to 

the next pixel that has a hue value close to this pixel’s hue 

value. However, there could be multiple candidates among 

the 4 pixels in the N, E, NE and SE directions to this pixel, 

and a jump to the pixel closest in hue may eventually lead 

you to a dead end (as in, going greedy short-term may not 

be the best choice long-term). The best candidate pixel Q 

for a given pixel P is the one that is close in hue to P but 

also neighbors pixels that are close in hue to itself. 

Equivalently, we want to transition from P to a pixel Q with 

high value V but also such that P and Q have similar hues. 

For further illustration, consider the following case: B and 

R are 2 hue values that are completely different. 1, 2, 3, 4, 

5, 6 are six pixels laid out with hue labels thus: 

 

 
 

 

1, 2 are neighbors, so are (3,4), (5,6), (2,3) and (2,5). 3 and 

5 clearly both have high values. You are trying to decide 

the best transition from 2. You have a choice to transition 

from 2 to 3 or 2 to 5. Clearly, to draw an edge the optimal 

transition is from 2 to 5 because they have the same hue. 

There are 4 actions for each pixel: transition to the pixel in 

the direction N, E, NE and SE. In a variant of this example, 

consider the case where 5 has a lower value V than 3 – the 

best transition is still 2 to 5, for drawing the edge. 

This example illustrates the role of the similarity function. 

We define the similarity function for this example as: 

 
Ψ(s, s’) = 1 – 1/180*Δ where 
 
s, s’ are two neighboring states/ pixels and  
 
Δ = | Hue(s) – Hue(s’) | is the difference in hues of the two 
states 
 

 

The above function is defined such that Ψ takes the value 

1 for two pixels with the same hue and 0 for two pixels 

with hue values differing by 180 and is a real value in [0,1]. 

Bellman’s Equation in this model is: 

 

V*(s) = R(s) + γ∑s’€N(s) maxa€A V*(s’) * Ψ(s, s’)  
 
Where Ψ(s, s’) is a real in *0,1+ 
 

 

 



And the Value Iteration algorithm becomes: 

 
1. For each state s, initialize V(s) := 0 
2. For every state, update  

V(s) := R(s) + γ∑s’€N(s) maxa€A V*(s’) * 

Ψ(s, s’) 

 

 

We do not include a formal proof but the above algorithm 

can be easily proven to converge since we replace the 

probability function by a similarity function with range 

[0,1]. Our test runs indicate that it converges, although it 

can take time for a big image. 

Putting it all together 

The extension and observations above allow us to treat 

edge detection as a Markov chain problem and detect 

edges in images fast with multiple threads. The update 

thread must be high priority and the others lower priority. 

It helps to synchronize between the threads so while the 

update thread runs, the others wait. 

In the end, one needs to use the DeBrushing method when 

the run is complete to zero out the internal pixels of a solid 

object. The benefit of using this is we get more continuous 

edges than DeBrushing alone. 

4 Using edge information in 

image classification 
We did not have time to use edge information in doing 

classifications. SVMs with Gaussian kernels have been 

used in the past with reported success even with fuzzy 

images for object recognition and we would like to try this 

technique. Histograms obtained by using the Laplace, 

Canny, Scharr filters to images can be used, so can the 

DeBrushing filter we propose and the Markov walk. 

5 AdultRank 
We propose AdultRank, a rank for web pages to indicate a 

measure of adultness of the page. The concept is 

somewhat similar to Google’s PageRank. Prior to 

establishing the concept, we observe: 

 Porn sites have strong inter-linkage and almost 

form a closed set. 

 Many porn sites link to Facebook and Twitter, 

both clean sites. 

 Some clean sites with unmoderated user-

contributed content such as some wiki and blog 

pages link to porn sites. 

 Most other clean pages and sites do not have 

outbound links to adult sites. 

 Craigslist has a personals section which requires 

age verification and is an adult section but the 

rest of craigslist is kid-friendly. Some of the 

Craigslist discussions have expletives. 

With this in mind, we propose AdultRank. The range of 

AdultRank could be anything, but we assume here it to be 

[0,10]. 

Let α’ be the “intrinsic AdultRank” of a page P. This is a 

score computed by classifiers we use to classify the page. 

We do not propose a detailed way to calculate this score 

in this paper but assume it is calculated using a reasonable 

heuristic. 

Let also αi be the AdultRanks of the web pages P links to. 

Let α be the effective AdultRank of P. α is calculated as 

follows, with w being a real in the [0,1] range (a good 

estimate is 0.5): 

 

If α’ > maxi { αi } 
then α = α’ 
else α = w * α’ + (1 – w) * max { αi } 
 
 

 

We do not include a formal proof of convergence for this 

algorithm but it can be shown to converge. This also takes 

into account the preceding bullet points in this section, 

clean sites with user content are not unduly marked as 

adult but they do accumulate rank, the rating of an adult 

page is not diluted by having outbound links to clean 

pages, Craigslist personal section and adult discussions are 

marked as adult but not other sections, AdultRank “flows” 

between interlinked adult sites and adult sites do not pass 

on their ranks to outbound links. Considering a threshold 

(say 7 or 8), a browser could decide to block a site as adult 

if its AdultRank exceeds the threshold. 

We have not yet experimented with the urls database to 

check how AdultRank fares in practice. 

6 Limitations 
Local image classification is more accurate than global 

classification but there are limitations of this method. 

Certain pictures can be easily classified as adult by a 



human judge even if they do not show explicit body parts. 

This method will also not be effective in judging fuzzy, 

incomplete, cartoonish and unclear images. 

Markov walks are expensive and, unless this method is 

further optimized, may not fare well on client machines if 

real-time image classification is the need. 

7 Conclusions 

We got strong results with metadata analysis, which 

proves that a Naïve Bayes classifier would fare extremely 

well for classifying sites and pages based on url, title, 

keywords and content. 

Our experiments on image analysis with even a limited 

data set shows that global analysis purely based on skin is 

unreliable but a similar data set with boxed images 

grouped into classes works reliably with 70% detection 

rates based on hue alone and 30 hue bins. Saturation 

seems to be somewhat of a randomizing feature, as whilst 

we noted monotonically better recognition rates with 

increasing hue bins, we noticed worse performance when 

saturation was added to the feature set and did not notice 

any particular pattern with increasing number of bins as 

one might expect. Gradient of histograms is a strong 

feature – we got TP rates exceeding 80%. Just like for face 

detection, the local analysis method can be used in 

conjunction with a Viola-Jones classifier to do body part 

detection in a bigger picture. The downside of this 

approach is if the analysis needs to be done on a client 

with low computing resources, this method would be 

expensive. 

 

The Boosting classifiers (LogitBoost and variations of 

AdaBoost) outperformed random forests by significant 

margins in general. Gentle AdaBoost worked very well in 

most situations. We used the MLP perceptron as well but 

that takes several hours for a run while the others take a 

minute or less to train and test. We hit peak TP rates of 

73% with Discrete Adaboost in the hue-based local case 

and 75% with Gentle Adaboost in the hue+saturation-

based local case. 

For global detection, the boosting classifiers hit peak 50% 

TP rates but it is hard to tell if this is reliable. At best, we 

conclude that boosting classifiers can be used as weak 

classifiers for global analysis.  

In all local and global analyses, we noticed low FP rates 

and high accuracy, part of which is due to the negative 

data set size being significantly larger than the positive set. 

AdultRank has a lot of promise and we will experiment 

with this. We also want to use some of the edge detection 

methods (such as SVMs with Gaussian kernels) used in the 

past using outputs from the Laplacian, Scharr Filter, 

Canny’s filter, the DeBrushing method and the DeBrushing 

method applied after our Markov walk. 

An effective all-round approach would be to use 

AdultRank followed by the Naïve Bayes classifiers followed 

by image classifiers. 
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Appendix A 
Code and some of the data will be made available on 

http://www.saikatsen.info or http://www.saikatsen.com. 

Appendix B 
The following custom applications were built during this 

work on Windows. Some C++ applications require Win64 
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and need to be compiled in 64-bit mode. Haar classifier 

requires 64-bit build of open-source OpenCV. 

 

Custom C# apps: (require .Net 2.0) 

• Crawler: given a set of sites, crawls them and outputs 

outbound links. Used to collect list of good and bad 

sites. This tool lists subdomains as well in the 

outbound list. 

• CLAdultFetcher: gets images from craigslist – 

positives from Personals, negatives from pets and 

babies. All images for a post are downloaded. City 

and section (pets/ babies etc.) are configurable. 

• ImageLabeler: tool used to label and classify boxed 

images (boxed using Office Picture Manager). Images 

were classified into five classes only two of which 

were finally used since they had the most samples. 

• AdultGuard: crawls sites and extracts title, keywords, 

url, content; reads a blacklist and graylist file and 

writes out 1 for word present and 0 for word absent 

in csv format to an output file that can be fed into the 

Bayes classifier for training and testing.  

• CreateHaarIndexFile: creates an index file for 

consumption by OpenCV HaarClassifier. The Haar 

classifier was trained successfully to this index file. 

• ImageFeatureExtractor, 

ImageFeatureExtractorConsole: calculates histogram 

of gradients, bins them into 16 bins and calculates % 

in each bin. A second function can apply the Debrush 

filter to a specified image. 

• CreateAdultDictionary: loads the Princeton WordNet 

dictionary, iterates through words user provides, lets 

user bucket them into blacklist and graylist and 

continues iterating. In the end, lets you save the 

dictionary to files adult.txt and gray.txt. Requires pre-

install of WordNet. 

• DataStructures: custom library with trie 

implementation. Used by other apps. 

• FileRandomizer: given a file, shuffles the lines in the 

file. This is needed so that positive and negative data 

in a file is randomly shuffled into an output file that 

can be partitioned into train and test data by 

classifiers. OpenCV allows you to specify a 

partitioning index between train and test data in a 

matrix. Without the shuffling, all test data would be 

negatives. 

 

Custom C++ apps: 

• SampleApp::ImageFeatureExtractorHSV: calculates 

Hue and Hue+Saturation color histograms, applies 

Canny, Laplace filters. 

• SampleApp::Classifier: The master program that runs 

Random forest classifier, Boosting classifiers, Naïve 

Bayes and MLP on train and test data, and reports 

test and train recognition %rate and TP, FP, TN, FN 

data. 

Machine Learning Code, Image Recognition Code:  

 OpenCV (http://opencv.willowgarage.com) 

http://opencv.willowgarage.com/

