
Adult Website Classifier

Saikat Sen
CS229 Machine Learning Course Project, Dec 2010

Abstract
The goal of this project was to detect adult websites and pages that are not safe for kids. We use five
different techniques. We create an adult vocabulary and use a composite classifier formed of multiple Naïve
Bayes classifiers to classify pages based on url, title, keywords and content. We use hue, saturation and
histogram of gradients to train random forests, different boosting classifiers and MLP on boxed images for
local image classification. The intent is to then use a Viola-Jones or Haar approach to classify images
globally. We show an edge-detection technique that works better than Canny’s for some images. We show
an extension to Markov chains that can help detect edges. The intent is to use classifiers such as SVMs with
Gaussian kernels to use edge information in detecting body parts. Lastly, we propose AdultRank, a ranking
metric that serves as an indicator of the adultness of a page. All the techniques together can be used
effectively to detect adult web sites and pages. The only overlap this work has with previous related work is
in image recognition using the features we have used and edge detection techniques.

Introduction
Website classification is an old problem. Internet Explorer

labels websites as phishing and malware. Google leaves

out malware sites from its search results. The goal of this

project was to build a classifier that can classify websites

and web pages as adult, i.e. sites and web pages that are

unsafe for kids.

Applications of this classification are many. Parents don’t

want their kids exposed to adult content. Some adults find

porn images offensive. Some governments ban porn sites

and have an ongoing requirement to detect them. Many

porn sites have a malware payload and install rootkits,

adware, spyware and other viruses, so guarding against

them is an additional safety measure.

In general, sites and pages could be classified as adult sites

based on many factors such as adult images, sexual

content, violent content, racist sentiments, extreme

radical views etc. The scope of this project is limited to the

first two categories. We try to classify pages based on

metadata and try to find good classifiers for adult images.

Video classification was out of scope for this project but

can be done by analyzing individual frames. We also

extend Markov’s model, propose a ranking metric

AdultRank and propose a new convolution filter for edge

detection.

Strategy
We employ three main techniques: image analysis, text

analysis and ranking. For text analysis, we inspect page

title, keywords, url and content. For image analysis, we use

different image recognition techniques. The OpenCV

package was used for image recognition and ML classifiers.

For ranking, we propose AdultRank, a ranking metric

similar to PageRank.

1 Url Text Classification

1.1 Url Features
The following metadata of web pages were used for adult

classification:

 Meta tag: “rating”. There are some standards

that sites can use to indicate adult content but

none that we saw use the “rating” meta tag. If

the rating tag is found to be adult or restricted,

the page is classified as adult. The code was not

included in the final toolset since this analysis

can be done independently without using

machine learning techniques.

 Title: if the page title contains an adult word, the

page is classified as adult.

 Url: if the page title contains an adult word, the

page is classified as adult. The chosen

implementation is naïve: it looks if the words

from an adult dictionary exist in the url as

substrings. A proper implementation would

parse the url into words with an optimum match,

take the site content into consideration and then

do a dictionary lookup. As an example, we

consider tit to be an adult word but this false

positives sites with “title” in the url. As an

example of requiring site content to be

considered, “google” can be parsed as the

mathematical number google, and “go” “ogle” –

the site content would help determine which of

the two parsings is more appropriate.

 Keywords: adult sites and pages tend to contain

adult words in their list of keywords for better

search engine rankings. We search for the

keywords in an adult vocabulary.

 Content: Page content is an important

determinant. Sites such as TheOnion.com are

adult sites with expletive but non-sexual

content. Certain blog pages and similar user-

contributed content pages (comments on news

articles, discussion forums etc.) with expletives

cannot be filtered out by any method but

content filtering.

1.2 Adult Vocabulary
In the absence of a good online adult dictionary, we

constructed one using a custom application and using the

Princeton WordNet lexical database. The custom

application allows the user to choose a source set of

words, outputs the synonyms in each iteration, and allows

the user to classify the synonyms as adult, gray and clean

before proceeding with the next iteration with the adult

synonyms. It is essential to classify the synonyms in each

iteration, otherwise the word bag escalate to size in

thousands due to words with multiple meanings such as

tool. We iterated until a new iteration didn’t output any

new words. Gray and clean words are not iterated upon.

The final list includes two files: adult.txt and gray.txt.

Adult.txt contains confirmed adult words that we would

like to filter, gray.txt contains words that we would like to

filter but can be used in adult and non-adult contexts: the

goal is for the classifier to learn the appropriate weights on

all words during training.

Our vocabulary contains 106 blacklisted adult words and

26 gray words.

Limitations of the current classification method include

not being able to parse different forms (plural, tenses,

conjunctional forms) of the parent word – this can be

easily solved by preprocessing words before looking up the

adult dictionary. Standards preprocessing techniques such

as stemming and skipping stop words were not used but

ideally should be.

1.3 Url Data
A custom app was written that could start with a starting

set of urls and find all the outbound http and https links

one level deep. The app allows filtering out urls in each

iteration and automatically filters out urls with schemes

such as mailto and about. Schemeless urls such foo.html

that are clearly internal links were filtered out in each

iteration.

Using this method, we collected 450 additional porn urls

with a starting set of 11 porn urls and 1500 good urls with

a starting set of 20 good urls. Both sets were manually

checked to make sure the set contains correct data. Most

could be easily discerned from the urls themselves.

A custom app was written to output data files for the good

and adult sites in csv format – 8 data files were generated:

adult and good for title, keyword, url matching and

content.

Caution: many porn sites will install malware (rootkits,

adware, spyware, viruses) on your system via drive-by

attacks.

1.4 Url Text Classifier
The text classifier classifies sites and pages based on the
features mentioned in the preceding “Url Features”
section.

The Text Classifier is a hierarchical composite classifier
with a Naïve Bayes classifier each for title, url, keywords
and content. We experimented with the individual
classifiers – constructing the composite classifier can be
easily done: if any of the classifiers outputs 1 indicating
adult, the final decision is taken as ‘adult’.

1.5 Url Text Classifier Results
The Naïve Bayes classifier works well in almost all cases

with high accuracy, high TP rate and a consistently low FP

rate. Including more blacklisted words into the vocabulary

and reducing the number of gray words improved the

metrics, and a bigger training set and vocabulary can

further improve the performance of these classifiers. In

the image below, content is shown to have quite a few

false positives – this was with 106 blacklisted adult words

and 26 gray words.

2 Image Classification
The goal of the image classification is to find adult images.

We tried both global classification and local classification

with boxed images. In this form, the strategy is to train

different classifiers to male and female organs from

different angles. We did the project with just one class of

adult images due to shortage of time but the intent is to

extend the approach and train other classifiers similarly.

In a complete classification model, we imagine training
different classifiers for different classes of adult images
and compositing them. The final classification would use a
weighted sum over the learned individual classifiers as is
done in Boosting models:

H(x) = sign (∑ αt * ht(x))

where the summation is done over t = 1 to T = #classifiers

and the αt parameters are learned using the boosting

algorithm.

2.1 Image Data
Craigslist personals and other sections were used as the

data source. A custom app was written to look for images

in the personals section, enumerate the html img tags,

crawl those urls and download images from the urls to a

local folder. A second custom labeler app was written that

allowed easy enumeration through the downloaded

images and labeling with outputs organized by labels.

Office Picture Manager was subsequently used to box the

images for optimal training.

Images were grouped into two positive classes of ~200

images each – where one class corresponds to the frontal

and the second class corresponds to profile view. Positive

(adult) images were collected from the Personals sections

of three different cities. 4000 negative (clean) images were

collected from the baby and pets section of two different

cities. Because of Craigslist user moderation, these two

sections did not contain any positive images.

Note that all boxed images were quality images. Images

that were poor resolution, incomplete, hazy, mixed with

other body parts or clothes, grayscale and cartoonish were

not used for training. We did not employ background

subtraction or other image pre-processing techniques.

2.2 Image Features
We mostly tried object recognition using the following

features, but also tried edge detection. Time prevented us

from training classifiers with edge detection techniques.

Two new edge detection techniques were attempted as

described below.

Image features used include:

 Color histograms – HSV histograms of images

were obtained and hue and saturation

histograms were extracted. We tried with 10, 20

and 30 bins for hue and 32 bins for saturation.

We experimented with hue separately as a

feature and with {hue, saturation} {10/20/30 x

32} bins. As an example, 30 hue bins x 32

saturation bins produced 960 features per

image. Hue is a good indicator of skin.

 Histogram of gradients – the gradient at each

pixel of an image was calculated as arctan(dy/dx)

and mapped to one of 16 buckets in the (-π, π]

range; finally the percentage of pixels in each of

the 16 buckets was output as an image feature.

This produced 16 features per image.

The intent is to be able to run the Viola-Jones/Haar

classifier that uses a cascaded boosted rejection model to

detect body parts in images using the trained local

classifiers. We trained the OpenCV Haar classifier

successfully using the image database but the 64-bit

OpenCV Haar classifier consistently failed to malloc at

runtime – we will continue working on this.

2.3 Image Classifiers
We tested the following classifiers for classifying images:

 Random Forests, with 100 trees, max depth of

10, min sample count of 10, regression accuracy

of 0, no surrogates, no priors, 15 max categories,

forest accuracy of 0.01.

 Boosting classifiers with max depth of 5, 100

weak classifiers, weight trim rate of 0.95

(samples with summary weight < 5% do not

participate in the next iteration of training), no

surrogates, no priors.

o AdaBoost – Real, Gentle and Discrete

o LogitBoost

Splitting criteria used: Gini for real, MiscClass for discrete and least-squares error for LogitBoost and gentle AdaBoost.

2.4 Image Classification Results
We experimented with different features and the two classes of images to see which classifiers fared better, to check the

relative importance of features and to determine the optimal values of the different parameters. We tested one run with MLP

as well – that took 1.5 hours to run. For the boosting classifiers half the set was presented as training set and half as test set.

For random forests, 80% of the data was used as training data. In all cases, both training and test sets had a mixture of positive

and negative data. We considered k-fold cross-validation but didn’t use it.

2.4.1 Results for Hue Histograms

As the ROC curves show the FP rate in all cases is extremely low (< 1%), with TP rates ~70% for Hue for local. We did not get

good results with our set for global detection. Accuracy is high in all cases. This validates that hue is a good indicator of skin and

can be used reliably for skin detection in local analysis. All boosting classifiers fared well.

Figure 1. ROC Curves and Accuracy Graph for Feature: Hue, Detection: Local, Image Class: 1.

0

20

40

60

80

0 0.5 1 1.5

Tr
u

e
 P

o
si

ti
ve

 R
at

e
 (

%
)

False Positive Rate (%)

ROC Curve

Random forests LogitBoost

Discrete AdaBoost Real AdaBoost

Gentle AdaBoost

94
96
98

100

0 10 20 30 40

A
cc

u
ra

cy
 %

#Hue bins

Accuracy

Random forests

LogitBoost

Discrete AdaBoost

Real AdaBoost

Gentle AdaBoost

Figure 2. ROC Curves and Accuracy Graph for Feature: Hue, Detection: Global, Image Class: 1.

2.4.2 Results for Hue+Saturation Histograms

As the ROC curves show the FP rate in all cases is extremely low (< 2%), with TP rates with peak ~70% for Hue+Saturation.

Results are worse for global analysis. Best models: Gentle and Discrete AdaBoost.

Figure 3. ROC Curves and Accuracy Graph for Feature: Hue+Saturation, Detection: Local, Image Class: 1.

0

20

40

60

80

0 0.2 0.4 0.6 0.8 1

Tr
u

e
 P

o
si

ti
ve

 R
at

e
 (

%
)

False Positive Rate (%)

ROC Curve

Random forests LogitBoost

Discrete AdaBoost Real AdaBoost

Gentle AdaBoost

96
96.5

97
97.5

98
98.5

99

0 10 20 30 40

A
cc

u
ra

cy
 %

#Hue bins

Accuracy

Random forests LogitBoost

Discrete AdaBoost Real AdaBoost

Gentle AdaBoost

0

20

40

60

80

-0.5 0 0.5 1 1.5 2

Tr
u

e
 P

o
si

ti
ve

 R
at

e
 (

%
)

False Positive Rate (%)

ROC Curve

Random forests LogitBoost

Discrete AdaBoost Real AdaBoost

Gentle AdaBoost

95

96

97

98

99

0 1 2 3 4

A
cc

u
ra

cy
 %

#H+S bins

Accuracy

Random forests LogitBoost

Discrete AdaBoost Real AdaBoost

Gentle AdaBoost

Figure 4. ROC Curves and Accuracy Graph for Feature: Hue+Saturation, Detection: Global, Image Class: 1.

2.4.2 Results for Histogram of Gradients

We calculated the Histogram of Gradients of images – for both full and local classification. With 16 histogram bins, we got the

best results (TP rate 65%, FP rate 0.5%) with Discrete and Gentle AdaBoost – the other boosting models and random forests did

not fare well. This is kind of expected; full classification is a far harder problem than local classification and we wonder how the

histogram of gradients would fare as a feature in global image classification with large data sets.

Results are far better for local classification with Discrete and Gentle AdaBoost returning 80%+ TP rates, < 1% FP rates and

~98% accuracy as the chart below shows.

Figure 5. Results for Feature: Histogram of Gradients, Detection: Local, Image Class: 1.

2.5 New Filter: DeBrushing
During experimentation we realized that edge detection

would benefit from removing the internal pixels of a solid

object. We applied a method we call DeBrushing to

achieve this. Below we show the results of applying this

method to some non-sexual images. The results are

promising and seem to be more effective in edge

detection for some images as we show below.

The pseudo-code for this method is as follows:

Define a threshold T to be in the range [0, 180]

0

50

100

0 0.5 1 1.5

Tr
u

e
 P

o
si

ti
ve

 R
at

e
 (

%
)

False Positive Rate (%)

ROC Curve

Random forests

LogitBoost

Discrete AdaBoost

Real AdaBoost

Gentle AdaBoost

96

98

100

0 1 2 3 4

A
cc

u
ra

cy
 %

#H+S bins

Accuracy

Random forests

LogitBoost

Discrete AdaBoost

Real AdaBoost

Gentle AdaBoost

For each pixel P do
Begin
 h1 = hue value of this pixel

For each pixel Q that is in the {North, East, NE, SE} of this pixel, h2 = hue value of Q

If (|h1 – h2| < T) for each combination of {P,Q}, color P as red else color P as white.

End

This algorithm does not work well with RGB channels as might be expected. In essence, the above algorithm removes all pixels

that have very similar hue values to its neighboring pixels. As an example, following is the result of applying this filter to the

image of a dog against a grassy background, with a configurable hue threshold of 8 (two neighboring pixels are considered to be

the same hue if their hue values differ by 7 or less). This filter removes all the grass instead of detecting the edges in them.

Below is what Canny’s Edge Detector outputs for the same image – it shows the edges in the grass as well. The DeBrush filter

performs better in this case.

Below are Mona Lisa’s pictures convolved using this filter.

Figure 6. From left to right: Mona Lisa (original), using Canny’s edge detector, using my DeBrush operator with a hue

threshold of 8, using my DeBrush operator with a hue threshold of 15.

We did not get time to use the convolved images using suitable classifiers for edge detection and using edges as image features

but we will continue working on this.

3 Extension of Markov Model
We propose an extension of the Markov Model to detect

edges in images. Markov models have not been used in

image recognition; this might be relatively slow to run but

nevertheless is an interesting technique.

Observation 1: The starting point of a random Markov

walk does not matter. Irrespective of the starting point,

one finally arrives at the optimal value functions and

optimal policy.

Observation 2: At any time, it is possible to deploy

multiple agents simultaneously walking the set of states

and bookkeeping rewards and transitions with one agent

doing periodic policy and value function updates; one

would still finally converge and would converge at the

optimal value functions and optimal policy.

We do not prove the second observation but it is easy to

see why this would hold true.

These two observations imply that Markov chains can be

executed on parallel threads in a large state space. This is

important, because we apply the Markov model in edge

recognition in images with a large state space: the

cardinality of the state set is the number of pixels in the

image. Before applying to this problem, the distributed

walk was implemented on the inverted pendulum problem

and worked well. We make one important observation: in

a multi-agent Markov walk where there is one thread that

does updates to the value functions periodically, the

update thread works slow because it performs a lot more

computations relative to the other say 100 worker

threads. The update thread needs to be prioritized with

higher priority and the others as low priority for this model

to work well. We added synchronization so the workers

would wait for the update thread to complete before

proceeding with the next iteration. Without this, the

update thread will starve and not get enough time slices to

complete one update iteration.

Simplification 1

Consider the case where the result of a transition from a

state s upon action a is well-defined instead of a

probability distribution, i.e. T(s,a) = s’ is well-known

instead of being a probability distribution.

In this case, Bellman’s equation for the optimal value

function:

V*(s) = R(s) + γ∑s’ maxa€A Psa(s’) V*(s’)

Simplifies to:

V*(s) = R(s) + γ∑s’€N(s) maxa€A V*(s’)

Where N(s) is the set of neighbors of s – the set of states

one can transition to from s, i.e.:

N(s) = ,s’ | s’= T(s, a)- where the transition function T(s, a)

gives the state reached from s on taking action a.

This simplification comes handy in case of large state

spaces by reducing the O(N
2
) term Psa(s’) to an O(N) term

(N being the cardinality of the set of states), thus reducing

computation and memory requirements. In our case, we

used a state space proportional to the size of an image in

pixels; the runtime memory requirement of our

application was in the order of gigabytes before this

simplification.

Extension

We build upon simplification 1 in this extension. Consider

a case where different transitions are possible from a state

s but the transition you want to make does not depend

only on the value of the new state but also on a function ψ

that is indicative of the similarity between s and s’ and the

“reward” the transition entails.

Consider the example we use this model in. We want to

detect edges in an image. Given any pixel that is on an

edge, to draw the edge you would want to transition to

the next pixel that has a hue value close to this pixel’s hue

value. However, there could be multiple candidates among

the 4 pixels in the N, E, NE and SE directions to this pixel,

and a jump to the pixel closest in hue may eventually lead

you to a dead end (as in, going greedy short-term may not

be the best choice long-term). The best candidate pixel Q

for a given pixel P is the one that is close in hue to P but

also neighbors pixels that are close in hue to itself.

Equivalently, we want to transition from P to a pixel Q with

high value V but also such that P and Q have similar hues.

For further illustration, consider the following case: B and

R are 2 hue values that are completely different. 1, 2, 3, 4,

5, 6 are six pixels laid out with hue labels thus:

1, 2 are neighbors, so are (3,4), (5,6), (2,3) and (2,5). 3 and

5 clearly both have high values. You are trying to decide

the best transition from 2. You have a choice to transition

from 2 to 3 or 2 to 5. Clearly, to draw an edge the optimal

transition is from 2 to 5 because they have the same hue.

There are 4 actions for each pixel: transition to the pixel in

the direction N, E, NE and SE. In a variant of this example,

consider the case where 5 has a lower value V than 3 – the

best transition is still 2 to 5, for drawing the edge.

This example illustrates the role of the similarity function.

We define the similarity function for this example as:

Ψ(s, s’) = 1 – 1/180*Δ where

s, s’ are two neighboring states/ pixels and

Δ = | Hue(s) – Hue(s’) | is the difference in hues of the two
states

The above function is defined such that Ψ takes the value

1 for two pixels with the same hue and 0 for two pixels

with hue values differing by 180 and is a real value in [0,1].

Bellman’s Equation in this model is:

V*(s) = R(s) + γ∑s’€N(s) maxa€A V*(s’) * Ψ(s, s’)

Where Ψ(s, s’) is a real in *0,1+

And the Value Iteration algorithm becomes:

1. For each state s, initialize V(s) := 0
2. For every state, update

V(s) := R(s) + γ∑s’€N(s) maxa€A V*(s’) *

Ψ(s, s’)

We do not include a formal proof but the above algorithm

can be easily proven to converge since we replace the

probability function by a similarity function with range

[0,1]. Our test runs indicate that it converges, although it

can take time for a big image.

Putting it all together

The extension and observations above allow us to treat

edge detection as a Markov chain problem and detect

edges in images fast with multiple threads. The update

thread must be high priority and the others lower priority.

It helps to synchronize between the threads so while the

update thread runs, the others wait.

In the end, one needs to use the DeBrushing method when

the run is complete to zero out the internal pixels of a solid

object. The benefit of using this is we get more continuous

edges than DeBrushing alone.

4 Using edge information in

image classification
We did not have time to use edge information in doing

classifications. SVMs with Gaussian kernels have been

used in the past with reported success even with fuzzy

images for object recognition and we would like to try this

technique. Histograms obtained by using the Laplace,

Canny, Scharr filters to images can be used, so can the

DeBrushing filter we propose and the Markov walk.

5 AdultRank
We propose AdultRank, a rank for web pages to indicate a

measure of adultness of the page. The concept is

somewhat similar to Google’s PageRank. Prior to

establishing the concept, we observe:

 Porn sites have strong inter-linkage and almost

form a closed set.

 Many porn sites link to Facebook and Twitter,

both clean sites.

 Some clean sites with unmoderated user-

contributed content such as some wiki and blog

pages link to porn sites.

 Most other clean pages and sites do not have

outbound links to adult sites.

 Craigslist has a personals section which requires

age verification and is an adult section but the

rest of craigslist is kid-friendly. Some of the

Craigslist discussions have expletives.

With this in mind, we propose AdultRank. The range of

AdultRank could be anything, but we assume here it to be

[0,10].

Let α’ be the “intrinsic AdultRank” of a page P. This is a

score computed by classifiers we use to classify the page.

We do not propose a detailed way to calculate this score

in this paper but assume it is calculated using a reasonable

heuristic.

Let also αi be the AdultRanks of the web pages P links to.

Let α be the effective AdultRank of P. α is calculated as

follows, with w being a real in the [0,1] range (a good

estimate is 0.5):

If α’ > maxi { αi }
then α = α’
else α = w * α’ + (1 – w) * max { αi }

We do not include a formal proof of convergence for this

algorithm but it can be shown to converge. This also takes

into account the preceding bullet points in this section,

clean sites with user content are not unduly marked as

adult but they do accumulate rank, the rating of an adult

page is not diluted by having outbound links to clean

pages, Craigslist personal section and adult discussions are

marked as adult but not other sections, AdultRank “flows”

between interlinked adult sites and adult sites do not pass

on their ranks to outbound links. Considering a threshold

(say 7 or 8), a browser could decide to block a site as adult

if its AdultRank exceeds the threshold.

We have not yet experimented with the urls database to

check how AdultRank fares in practice.

6 Limitations
Local image classification is more accurate than global

classification but there are limitations of this method.

Certain pictures can be easily classified as adult by a

human judge even if they do not show explicit body parts.

This method will also not be effective in judging fuzzy,

incomplete, cartoonish and unclear images.

Markov walks are expensive and, unless this method is

further optimized, may not fare well on client machines if

real-time image classification is the need.

7 Conclusions

We got strong results with metadata analysis, which

proves that a Naïve Bayes classifier would fare extremely

well for classifying sites and pages based on url, title,

keywords and content.

Our experiments on image analysis with even a limited

data set shows that global analysis purely based on skin is

unreliable but a similar data set with boxed images

grouped into classes works reliably with 70% detection

rates based on hue alone and 30 hue bins. Saturation

seems to be somewhat of a randomizing feature, as whilst

we noted monotonically better recognition rates with

increasing hue bins, we noticed worse performance when

saturation was added to the feature set and did not notice

any particular pattern with increasing number of bins as

one might expect. Gradient of histograms is a strong

feature – we got TP rates exceeding 80%. Just like for face

detection, the local analysis method can be used in

conjunction with a Viola-Jones classifier to do body part

detection in a bigger picture. The downside of this

approach is if the analysis needs to be done on a client

with low computing resources, this method would be

expensive.

The Boosting classifiers (LogitBoost and variations of

AdaBoost) outperformed random forests by significant

margins in general. Gentle AdaBoost worked very well in

most situations. We used the MLP perceptron as well but

that takes several hours for a run while the others take a

minute or less to train and test. We hit peak TP rates of

73% with Discrete Adaboost in the hue-based local case

and 75% with Gentle Adaboost in the hue+saturation-

based local case.

For global detection, the boosting classifiers hit peak 50%

TP rates but it is hard to tell if this is reliable. At best, we

conclude that boosting classifiers can be used as weak

classifiers for global analysis.

In all local and global analyses, we noticed low FP rates

and high accuracy, part of which is due to the negative

data set size being significantly larger than the positive set.

AdultRank has a lot of promise and we will experiment

with this. We also want to use some of the edge detection

methods (such as SVMs with Gaussian kernels) used in the

past using outputs from the Laplacian, Scharr Filter,

Canny’s filter, the DeBrushing method and the DeBrushing

method applied after our Markov walk.

An effective all-round approach would be to use

AdultRank followed by the Naïve Bayes classifiers followed

by image classifiers.

References
*1+ Canny, J.F., “A computational Approach to Edge
Detection”, IEEE Trans. On Pattern Analysis and
Machine Intelligence, Vol. 8, 1986, pp. 679-698.

[2] Fleck, M. M., Forsyth, D. A., and Bregler, C. (1996).
“Finding naked people”. European Conference on
Computer Vision.

[3] Bradski, G. (2000). Programmer's Toolchest:The
OpenCV Library. Software at
http://opencv.willowgarage.com.

[4] Rowley, H.A, Jing, Y, Baluja, S, “Large scale Image-based
adult-content filtering”.
http://static.googleusercontent.com/external_content/un
trusted_dlcp/www.google.com/en/us/research/pubs/arch
ive/38.pdf

*5+ Brin, S., Page, L., “The Anatomy of a Large-Scale
Hypertextual Web Search Engine”,
http://infolab.stanford.edu/~backrub/google.html

[6] [Page 98] Page, L., Brin, S., Motwani, R., Winograd, T.
“The PageRank Citation Ranking: Bringing Order to the
Web”.
http://google.stanford.edu/~backrub/pageranksub.ps

*7+ Jiang, Z., Yao, M., Yi, W., “Filtering objectionable image
based on image content”,
http://portal.acm.org/citation.cfm?id=1758039.

[8] Fei-Fei, L., Fergus, R., Torralba, A., “Recognizing and
Learning Object Categories”,
http://people.csail.mit.edu/torralba/shortCourseRLOC/ind
ex.html

Appendix A
Code and some of the data will be made available on

http://www.saikatsen.info or http://www.saikatsen.com.

Appendix B
The following custom applications were built during this

work on Windows. Some C++ applications require Win64

http://opencv.willowgarage.com/
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/research/pubs/archive/38.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/research/pubs/archive/38.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/research/pubs/archive/38.pdf
http://infolab.stanford.edu/~backrub/google.html
http://google.stanford.edu/~backrub/pageranksub.ps
http://portal.acm.org/citation.cfm?id=1758039
http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
http://www.saikatsen.info/
http://www.saikatsen.com/

and need to be compiled in 64-bit mode. Haar classifier

requires 64-bit build of open-source OpenCV.

Custom C# apps: (require .Net 2.0)

• Crawler: given a set of sites, crawls them and outputs

outbound links. Used to collect list of good and bad

sites. This tool lists subdomains as well in the

outbound list.

• CLAdultFetcher: gets images from craigslist –

positives from Personals, negatives from pets and

babies. All images for a post are downloaded. City

and section (pets/ babies etc.) are configurable.

• ImageLabeler: tool used to label and classify boxed

images (boxed using Office Picture Manager). Images

were classified into five classes only two of which

were finally used since they had the most samples.

• AdultGuard: crawls sites and extracts title, keywords,

url, content; reads a blacklist and graylist file and

writes out 1 for word present and 0 for word absent

in csv format to an output file that can be fed into the

Bayes classifier for training and testing.

• CreateHaarIndexFile: creates an index file for

consumption by OpenCV HaarClassifier. The Haar

classifier was trained successfully to this index file.

• ImageFeatureExtractor,

ImageFeatureExtractorConsole: calculates histogram

of gradients, bins them into 16 bins and calculates %

in each bin. A second function can apply the Debrush

filter to a specified image.

• CreateAdultDictionary: loads the Princeton WordNet

dictionary, iterates through words user provides, lets

user bucket them into blacklist and graylist and

continues iterating. In the end, lets you save the

dictionary to files adult.txt and gray.txt. Requires pre-

install of WordNet.

• DataStructures: custom library with trie

implementation. Used by other apps.

• FileRandomizer: given a file, shuffles the lines in the

file. This is needed so that positive and negative data

in a file is randomly shuffled into an output file that

can be partitioned into train and test data by

classifiers. OpenCV allows you to specify a

partitioning index between train and test data in a

matrix. Without the shuffling, all test data would be

negatives.

Custom C++ apps:

• SampleApp::ImageFeatureExtractorHSV: calculates

Hue and Hue+Saturation color histograms, applies

Canny, Laplace filters.

• SampleApp::Classifier: The master program that runs

Random forest classifier, Boosting classifiers, Naïve

Bayes and MLP on train and test data, and reports

test and train recognition %rate and TP, FP, TN, FN

data.

Machine Learning Code, Image Recognition Code:

 OpenCV (http://opencv.willowgarage.com)

http://opencv.willowgarage.com/

