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1. Introduction
In spacecraft attitude control systems, the accuracy of the alignment and calibration of the various attitude and rate
sensors is critical to achieving high pointing accuracy. An inertial reference unit (IRU) is an inertial sensor that is capable
of measuring the change in angular direction about one or more ‘sense axes.’ The calibration of the IRU takes on even
greater performance implications during those time periods when absolute orientation measurements are unavailable and
the spacecraft must propagate its attitude based on IRU measurements alone. This project investigates the application of
machine learning techniques to the estimation of IRU calibration parameters critical to achieving high spacecraft attitude
control performance.

2. Attitude Measurement Model
It is presumed that the spacecraft is capable of directly measuring its absolute attitude with respect to inertial space,
providing a sequence of attitude quaternions q(i) describing the orientation of the body frame in inertial space at discrete
time intervals. The simplifying assumption is made that the spacecraft motion between the attitude measurements can be
described by a simple rotation. This change in orientation in the body frame θ

(i)
b is described by:

δq(i) = q(i)(q(i−1))−1

δq(i) = cos
α(i)

2
+~u(i) sin

α(i)
2

θ
(i)
b = α

(i)~u(i)

If the attitude measurements are produced, for example, by a star tracker, then they will contain errors due to misalignments,
noise, errors in the star catalogue, etc. For simplicity, these errors are ignored and the measurements are assumed to be exact.

3. Inertial Reference Unit Calibration Model
The IRU measures the incremental angle change about its sense axis. Defining the change in orientation in the body frame
over a discrete time interval T = t(i)− t(i−1) as θ

(i)
b , the IRU outputs a number of pulses c(i) given by the projection of

orientation change onto the gyro’s sense axis (given by the unit vector w):

sc(i) = (1−λ −µsign(w ·θ (i)
b ))w ·θ (i)

b −T b(i)−
∫

T
η(t)dt

where s is the assumed scale factor, λ and µ are the symmetric and asymmetric scale factor errors, b(i) is the bias over
time interval T , and η is white noise.

4. Linear Dynamical System Model
The gyro alignment and calibration parameters (w, s, λ , and µ) are assumed to be constant. The angle white noise of the
gyro output, η , is assumed to be Gaussian with a variance σ2

η . The gyro bias is assumed to vary according to a Gaussian
rate random walk process driven by white noise, ηrrw, with variance σ2

rrw = 2
τs

σ2
s where σs is the bias stability and τs is

the stability interval. We define the linear dynamical system model of the bias as:

b(i+1) = b(i)+ηrrw

y(i) = T b(i)+η

where y(i) is the difference between the measured body rate and the estimated body rate about the sense axis from the
IRU pulses c(i):

y(i) = (1−λ −µsign(w ·θ (i)
b ))w ·θ (i)

b − sc(i)



5. Expectation-Maximization Algorithm for Parameter Estimation
The gyro alignment and calibration parameters can be estimated by applying an expectation-maximization algorithm to
the linear dynamical system describing the bias perturbation. Given initial estimates for the alignment and calibration
parameters (the assumed sense axis w, and the assumed scale factor s, λ , and µ), the following estimation and
maximization steps are repeated until convergence.

Estimation Step:
Based on the linear dynamical system model, we can write the conditional densities for the state and output variables:

p(y(i)|b(i);w,s,λ ,µ,ση) = N(T b(i),σ2
η)

p(b(i)|b(i−1);σrrw) = N(b(i−1),σ2
rrw)

From the Markov property implicit in the model, the joint probability of a bias and output sequence p({b},{y}) is given
by:

p({b},{y}) = p(b(1))
m

∏
i=2

p(b(i)|b(i−1))
m

∏
i=1

p(y(i)|b(i))

The sequence of biases that maximizes log p({b},{y}|{y}) is found by implementing a forward-backward algorithm over
the linear dynamical system, using the Kalman filter equations as the forward step and Rauch’s recursion as the backward
step. Adopting the notation b̂i| j = E[b(i)|y(1), . . . ,y( j)] and Pi| j = var(b(i)|y(1), . . . ,y( j)), the Kalman filter equations compute
b̂i|i according to:

b̂i|i−1 = b̂i−1|i−1

Pi|i−1 = Pi−1|i−1 +σ
2
rrw

K(i) = Pi|i−1T (T Pi|i−1T +σawn)
−1

b̂i|i = b̂i|i−1 +K(i)(y(i)−T b̂i|i−1)

Pi|i = Pi|i−1 +K(i)T Pi|i−1

Rauch’s recursion is now used to compute b̂i|m according to:

K̃(i) = Pi|iP
−1
i+1|i

b̂i|m = b̂i|i + K̃(i)(b̂i+1|m− b̂i|i)

Maximization Step:
Use the computed biases and gradient descent to estimate the parameters of the model. Defining the measurements as:

z(i) = sc(i)+T b̂i|m

and the hypothesis of the model to be:

θ
(i)
g = (w−δuu−δvv) ·θ (i)

b

h(i) = (1−λ −µsign(θ (i)
g )θ

(i)
g

where [u,v,w] form a right handed orthogonal basis, the updates to the model parameters are given by:

δu := δu +α

m

∑
i=1

(h(i)− z(i))(1−λ −µsign(θ (i)
g )u ·θ (i)

b

δv := δv +α

m

∑
i=1

(h(i)− z(i))(1−λ −µsign(θ (i)
g )v ·θ (i)

b

s+ := s++α

m

∑
i=1

1{sign(θ (i)
g ) = +1}(h(i)− z(i))θ (i)

g

s− := s−+α

m

∑
i=1

1{sign(θ (i)
g ) =−1}(h(i)− z(i))θ (i)

g
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Fig. 1. Calibration Maneuver Attitude Profile

From the updates, the new alignment and scale factor errors can be computed:

s+ := 1− (1− s+) ||w−δuu−δvv||2
s− := 1− (1− s−) ||w−δuu−δvv||2

w :=
w−δuu−δvv
||w−δuu−δvv||2

λ :=
s++ s−

2

µ :=
s+− s−

2

6. Results
The EM algorithm was applied to attitude and IRU data. Calibration results are provided below for one gyro sense axes.

w =

 0.000983072276832
0.999999242473548
−0.000740689698082


s = 2.386393534388658×10−6 rad / pulse

λ = 0.006789928965283

µ = 7.437154236313304×10−4

Figure 1 depicts the attitude quaternions and the derived change in orientation of the body frame, θ
(i)
b , during .2 second

intervals. Figure 2 shows the number of gyro pulses for the calibrated axis during the same intervals and the converged
estimate of the gyro bias, b̂i|m. The convergence behavior of the algorithm can be visualized by plotting the value of the
cost function J = 1

2 ∑
m
i=1(h

(i)− z(i))2 at each iteration in the maximization step of the algorithm (given in Figure 3). The
sharp discontinuities are due to the recalculation of b̂i|m during the expectation step. The algorithm has mostly converged
after two iterations of the EM algorithm (corresponding to around 400,000 iterations of the maximization step).

7. Conclusions
This approach to IRU calibration provides an effective way of estimating the gyro alignment and calibration parameters
without requiring complete IRU observations of the spacecraft rotation (measurements about three independent axes).
This method also allows characterization of the bias stability and scale factor errors on a per axis basis, independent of
how the spacecraft combines multiple gyro measurements within its attitude control system. This independence is helpful
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Fig. 3. Parameter Estimation Algorithm Convergence Behavior

in decoupling performance characteristics of the hardware with those of the control system software.
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