
 

 

 
Abstract 

 
Retinal ganglion cells are most sensitive to the visual 

feature defined by the linear spatio-temporal receptive 
field. They encode this feature according to a nonlinear 
sensitivity curve that often has a threshold and saturation. 
Both the linear receptive field and nonlinearity are 
adaptive, in that these parameters change depending on 
the recent statistics of the stimulus.  

In the context of motion processing, changes in gain 
are important for a cell to detect textures of low contrast 
or luminance, but not be saturated by high contrast or fast 
motion. In order to make the comparison of trajectory in 
the center and background regions, both sites should 
avoid saturation, yet detect all available weak motion 
signals. 

One potentially rich source to generate adaptation is 
the diverse population of inhibitory amacrine cells, which 
comprise about thirty types. Amacrine transmission is 
thought to play a role in retinal adaptation to more 
complex stimulus statistics (Hosoya et al., 2005), but not 
for simple statistics such as luminance and contrast.  

To understand how the circuit transforms the visual 
scene, we will identify components of retinal image 
processing using a novel combined experimental and 
theoretical approach that includes intracellular recording, 
simultaneous current injection and multielectrode 
recording, and computational modeling. Here, we carry 
this analysis further and divide the population of ganglion 
cells into functional classes using quantitative clustering 
algorithms that combine several response characteristics. 
We first used the dimensionality reduction methods to 
extract the visual features encoded by the amacrine and 
ganglion cells that best describe their response properties. 
Using these features to classify the interactions between 
these two cells revealed seven types of transmissions, in 
agreement with the types of modulations in the response 
properties of ganglion cells derived by the amacrine cell’s 
output.  

 

1. Introduction 
 

Object Motion Sensitivity in the retina 
One of the important circuitries in the retina that 

contains multiple sites of adaptation is the object motion 
sensitivity circuitry, in which amacrine cells play an 
important role. 

Recently, it was discovered that segmentation of 
moving objects, and rejection of background motion 
begins in the retina [1]. A subset of retinal ganglion cells 
responds to motion in the receptive field center, but only if 
the motion trajectory is different from that of the 
surrounding region (Figure 1).  
 

 
Figure 1: Objection motion sensitivity in a retina ganglion cell. 
Electrical activity in OMS ganglion cells was recorded from the 
isolated retina of a salamander. A video monitor was projected 
onto the retina, and extracellular electrical impulses were 
recorded with an array of electrodes. A, Diagram of object and 
background regions in the stimulus display. B,C, First row, 
Space–time plot of a vertical cross section through the center of 
the stimulus (line in A), showing trajectories for global motion 
and differential motion. Global Motion represents fixational eye 
movements with no object motion. Differential Motion 
represents object motion in the presence of eye movements. 
Motion in the object region is identical in both cases. Second 
row, Average firing rate of an OMS ganglion cell in response to 
10 repeats of each stimulus sequence. The cell is nearly silent in 
Global Motion, but fires precise bursts of activity during 
Differential Motion. (From Baccus et al., 2008). 

These cells are termed “Object Motion Sensitive” 
(OMS) cells. Like many retinal ganglion cells, the 
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responses of OMS neurons are highly precise [2]. When 
the same visual stimulus is repeated, the action potentials 
are highly reproducible in time, in some cases to within 
less than a millisecond. This has enabled mathematical 
models to capture the responses of OMS cells, involving 
the interaction of OMS cells and other interneurons in the 
retinal circuitry (Figure 2).  
 

 

 
 
Figure 2: Model and neural circuit for object motion sensitivity. 
(Top). The visual stimulus is first processed by linear subunits 
with a small receptive field and transient dynamics. An OMS 
ganglion cell (G) receives excitatory input in the object region 
from multiple small subunits. Each subunit applies a linear 
spatiotemporal filter to the stimulus in its receptive field. 
Amacrine and ganglion cells each sum the rectified output of 
many linear bipolar cells. To predict the response of an OMS 
ganglion cell to differential motion, amacrine inhibition from the 
background was combined with bipolar input from the object 
region before the stage of rectification. (Bottom) The neural 
circuit that produces object motion sensitivity. Bipolar cells 
perform the spatio-temporal linear filtering. Rectification is at 
the output synapse of bipolar cells. A specific subtype of 
amacrine cell with long axons produces background suppression. 
(From Baccus et al., 2008). 
 

Although this block diagram describes the response of 
the OMS ganglion cell accurately, it does not specify what 

neural circuit and what algorithm implements the 
computation. To flesh out the schematic with actual 
processing units and building blocks of an object motion 
algorithm, one needs to answer the following questions: 
(1) What is the identity and properties of the subunits and 
inhibitory cell? (2) How is the output of these subunits 
integrated? (3) At what level is the signal from background 
motion combined with that from the object region? 

In our quest to answer these questions, we measured 
how the signals transmitted through individual amacrine 
cells contribute to the ganglion cell response by recording 
intracellularly from single amacrine cells while 
simultaneously recording spiking activity from the 
ganglion cell population using a multielectrode array. We 
presented a randomly flickering visual stimulus drawn 
from a Gaussian distribution while injecting Gaussian 
white-noise current into the amacrine cell. By this direct 
perturbation of the circuit we measured how the 
interneuron generates adaptation of the ganglion cell 
visual response.  

To model the contribution of each amacrine cell to 
each ganglion cell’s visual response, we combined 
elements of a linear-nonlinear (LN) model, consisting of a 
linear temporal or spatio-temporal filter followed by a 
static nonlinearity. The model consisted of the linear 
receptive field and nonlinearity of the ganglion cell, a 
modulatory pathway containing the LN model of the 
amacrine cell, and a transmission filter linking the two 
pathways.  

We found that amacrine transmission scales the 
ganglion cell nonlinear response function by a gain factor, 
and in some cases, also modulates the linear receptive 
field of the ganglion cell, changing it from being more 
integrating to more differentiating. This modulation is 
driven by the preferred feature of the amacrine cell, even 
if this feature is different from that of the ganglion cell.  

Even at a fixed luminance and contrast, retinal 
ganglion cells adapt at a fast timescale. For this type of 
adaptation, an amacrine cell provides contextual 
information that modulates the ganglion cell visual 
response. Thus, the space of visual features encoded by 
the diverse population of amacrine cells defines a 
multidimensional context that gates and modifies a 
different space of visual feature encoded by the population 
of ganglion cells. 

These modulations vary in their selected features, 
patterns, model parameters, and strength. This project 
studies the diversity of these modulations, potential 
sources of this variability, and their possible functional 
contributions to the retinal processing. To understand the 
contribution of amacrine transmission to fast adaptation of 
retinal ganglion cells, we will identify and characterize the 
functional role of an amacrine cell using the following 
procedure. 

First we divide the population of ganglion cells and 



 

 

amacrine cells into functional classes using quantitative 
clustering algorithms that combine several response 
characteristics. Since the response characteristics of the 
neurons occupy a high dimensional space of features, we 
use the dimensionality reduction techniques to find a low 
dimensional representation of the feature space that is 
being used for clustering the neurons. Then we divide the 
modulations into functional classes using clustering 
algorithms, based on changes in the response variables 
that are reflected in our model’s parameters. 

Finally we explore the correspondences of these two 
clustering schemes. If members of each modulation cluster 
corresponded to the distinct functional clusters of neurons, 
we could understand which properties or components of 
ganglion cells’ or amacrine cells’ response are 
contributing to or shaping the adaptation components.  

2. Methods 
 
Stimulation 

A uniform field randomly flickering visual stimulus, 
drawn from a Gaussian distribution, is projected from a 
video monitor onto the intact, isolated salamander retina 
and an array of extracellular electrodes is used to record 
the light responses of many ganglion cells at once. 
Simultaneously, an intracellular recording monitors the 
visual responses of an amacrine cell. Then, white noise 
current is injected into the amacrine cell to measure the 
kinetics and nonlinear properties of how the cell’s output 
modifies the circuit’s behavior. Thus, many simultaneous 
paired recordings are performed (Figure 3). 

 
Figure 3: Schematic diagram of simultaneous intracellular and 
multielectrode recording preparation. 
 

Analysis: modeling 
A simple model that has been used to approximate 

the behavior of amacrine and ganglion cells is a linear-
nonlinear (LN) model (Figure 4) [3]. The LN model 
describes the average behavior of the circuit, but does not 
account for many of the nonlinear contributions of 
individual amacrine circuits.  
 

 
Figure 4. Linear-Nonlinear (LN) model. The LN model consists 
of the stimulus intensity weighted over time by a linear temporal 
filter or spatio-temporal filter, followed by a static nonlinearity. 
 

To capture the effect of the amacrine cell, we have 
modified the direct, single pathway LN model of the 
ganglion cell’s firing rate by adding an indirect parallel 
pathway that includes the effect of amacrine cell on the 
direct visual pathway (Figure 5). Our modified model 
consists of the following components, all computed from a 
single experiment: 

- Direct input. A spatio-temporal LN model of each 
ganglion cell’s firing rate is computed. This pathway 
represents inputs to the ganglion cell other than the 
amacrine cell.  

- Amacrine input. A spatio-temporal LN model of 
the amacrine cell’s membrane potential is computed by 
correlating the visual stimulus with the cell’s response 
(Figure 5).  

- Amacrine transmission kinetics. By correlating the 
Gaussian white-noise current injected into the amacrine 
cell with each ganglion cell’s firing rate, a linear temporal 
filter is computed representing the average kinetics of 
transmission for each cell pair (Figure 5).  

- Amacrine effect on the ganglion cell nonlinearity. 
We characterize the transmission of the cell by computing 
a two-dimensional nonlinear function that combines the 
amacrine transmission with the direct pathway. We found 
that the amacrine transmission changes ganglion cells’ 
nonlinear characteristics by scaling its nonlinear response 
function by a gain factor (Figure 5). 

 - Amacrine effect on ganglion cell temporal 
processing. We have found that this amacrine cell strongly 
modulates the temporal response of ganglion cells. When 
the amacrine cell is more hyperpolarized, the ganglion cell 
speeds up and becomes more differentiating, thus 
encoding changes in light intensity more than the absolute 
light intensity (Figure 5).  



 

 

 
Figure 5. Model of amacrine cell transmission acting on a 
ganglion cell. The visual stimulus s(t) passes through Fa(t) and 
Na(a), the linear filter and nonlinearity of the amacrine cell, 
followed by Ft(t), the amacrine transmission filter. The amacrine 
pathway modulates both the kinetics and the nonlinearity of the 
ganglion cell. The ganglion cell visual linear filter, Fg(t), was 
calculated by averaging visual stimuli preceding the time of a 
ganglion cell spike. 
 
Analysis: Classification 

 
We used a broad parameter ensemble-linear temporal 

filters, and nonlinearity functions of the two-pathway LN 
model-to classify cells or cell pairs into types having 
systematically different temporal responses and nonlinear 
sensitivities. Each linear temporal filter is characterized by 
a high dimensional visual response vector as a function of 
time, with the size in the order of hundreds of 
milliseconds. A nonlinearity function is characterized by 
three parameters 

€ 

a1,a2 ,a3  of its exponential fit of the 

form 

€ 

a1
erf (x+a2 )+1 + a3 . 

The functional similarity between two cells or two 
cell pairs is initially quantified by computing the mean-
squared difference between their temporal dynamics and 
nonlinearity parameters. However, since we have 
hundreds of cells and cell pairs, each characterized by a 
high dimensional feature vector consisting of its temporal 
dynamics and static nonlinearities, we need to construct a 
low dimensional representation of the response 
characteristics to find a reasonable quantitative measure of 
functional similarity used to feed our clustering 
algorithms. 

Because there exists no a priori method of functional 
classification, we have made several choices of 
dimensionality reduction and clustering methods to divide 
the ganglion cells, amacrine cells, and ganglion-amacrine 
cell pairs into broader or finer groupings. 

We initially used the temporal dynamics of the 
receptive field to classify ganglion cells into functional 

types. We used linear dimensionality reduction methods 
including principal component analysis (PCA), and 
multidimensional scaling (MDS) (Table 1) [4] to find a 

low dimensional representation of the high dimensional 
visual response vectors- namely the linear temporal filters 
and static nonlinearity functions of ganglion and amacrine 
cells. 

Combining all these linear and nonlinear receptive 
field’s characteristics results in a nonlinear feature space. 
However, linear dimensionality reduction methods will 
fail to find any lower dimensional space that is embedded 
non-linearly in a higher dimension. For Euclidean 
manifolds, Isomap (Table 2) [5] and locally linear 
embedding (LLE) (Table 3) [6, 7] avoid this shortcoming 
of linear projection. The idea is that for a given point in a 
well sampled space, the point’s nearest neighbors will lie 
only in that low dimensional. Then, if we preserve the 
local geometry and dimension of each neighborhood, we 
should be able reconstruct the manifold using only the 
dimension of those neighborhoods.  

 
Table 1. Multidimensional scaling 
Given high-dimensional points 

€ 

xi, recovers the low-dimensional 
coordinates of the data that describe where the points lie on the 
manifold, in other words, find an embedding of the data in a low 
dimensional space, that preserves its essential regularities 
 

 
 
 
Table 2. Isomap 
The Isomap algorithm takes as input the distances dX(i,j) between 
all pairs i,j from N data points in the high-dimensional input 
space X, measured either in the standard Euclidean metric or in 
some domain-specific metric. The algorithm outputs coordinate 
vectors yi in a d-dimensional Euclidean space Y that best 
represent the intrinsic geometry of the data.  

 
 
Table3. Locally linear embedding 
LLE maps a data set X, globally to a data set Y. Assuming the 
data lies on a nonlinear manifold which locally can be 



 

 

approximated linearly, it uses two stages: (I) locally fitting 
hyper-planes around each sample xi, based on its k nearest 
neighbors, and calculating reconstruction weights, and (II) 
finding lower-dimensional co-ordinates yi for each xi, by 
minimizing a mapping function based on these weights. 
 

 
 

Finding a low dimensional representation of the 
linear dynamics and nonlinear sensitivity characteristics 
for the cells or cell pairs, we formalize classification using 
k-means clustering and hierarchical clustering algorithms.  
 
Broad classification 

Functional classification was carried out using the 

method of agglomerative clustering [9], an iterative 
algorithm, that at each step merges the most functionally 
similar cells into the same cluster and averages all of their 
properties together, weighted by the number of cells in 
each cluster; By examining the similarity of the clusters 
that are merged at each step of this algorithm, we can 
assess the significance of the merger, which is the 
functional difference between the two clusters that were 
merged together. By looking at the merger score as fewer 
and fewer clusters remain, we can find that the differences 
between clusters suddenly become large, which indicates 
that these clusters are significant. 

An alternative way to set the significance threshold is 
by looking at the histogram of the merger score. In this 
manner, one can identify all of the outlier values of the 
merger score and set the number of clusters as the 
maximal number that includes all these outliers (Figure 
6A). 

Further discussion of the issue of choosing the 
number of significant clusters in a data set can be found in 
several interesting books and articles [9]. For broad 
functional types, the algorithm was applied to all of the 
cells recorded from multiple retinas. 

 
Fine classification 

To split the ganglion cell population or ganglion-
amacrine cell pair interactions into as many types as could 
be justified by the data, we used k-means clustering to 

define cluster boundaries, because this method is known to 

be biased toward forming extra clusters when used on data 
with relatively few examples [9]. 

In K-means clustering, we first decide how many 
clusters the data will be divided into and randomly assign 
one cell to each cluster. All remaining cells are assigned to 
the nearest cluster, based on the (normalized) mean-
squared difference between cell i and cluster k, aik. For this 
analysis, we used the visual features extracted by our 
dimensionality reduction algorithms. Next, the cluster 
waveform is computed by averaging the features of all 
members. At this point, a goodness-of-fit measure is 
obtained by calculating the total mean-squared difference 
between all cells and their respective clusters, 

€ 

a = aiki∑ . 

 The algorithm iterates by starting with the new 
cluster waveforms and reassigning all cells to the nearest 
cluster. This iteration is continued until the total difference 
between cells and clusters, ā, no longer decreases. 
Because the resulting cluster structure depends on the 
choice of initial clusters, we repeated this algorithm with 
1000 different random choices of initial cluster definitions 
for each value of K and selected the final cluster partition 
that had the smallest total difference, ā [8]. 

The number of clusters K is a parameter of this 
algorithm, and as more clusters are used to describe the 
population, the total difference ā(K) must decrease. To 
determine what value of K resolves significant clusters, we 
plotted the decrease in the total difference as new clusters 
were added, 

€ 

Δ(K ) = a (K ) − a (K−1) . When this decrease 
is large, clusters are significant, and when the decrease is 
small, the new clusters resolve only minor details in the 
ganglion cell population (Figure 7A).  

3. Results 
 

To understand the manner in which ganglion cells 
and amacrine cells collectively represent a visual scene, 
we calculated the temporal amacrine transmission filter of 
every recorded ganglion cell in a small patch of the retina. 
By reducing the dimensionality of the feature space 
characterizing the interaction between response 
characteristics of the visual pathway consisting of a 
ganglion cell’s LN model and response characteristics of 
the modulatory pathway containing the LN model of the 
amacrine cell, we could quantitatively cluster the 
interactions-namely the transmission filters linking the two 
pathways. Such computation will elucidate how these 
clusters of interactions distribute their responses to a 
dynamic input variable. 
 
 
 
Classification of ganglion cells 
 A 



 

 

Our objective here was to use quantitative clustering 
techniques along with a very descriptive set of features, so 
that our results better reflect the information encoded 
collaboratively by ganglion cells and amacrine cells about 
the visual scene. Because there exists no a priori method 
of functional classification, we made several choices of 
feature space and clustering method to divide the cells into 
broader or finer groupings. We found that the feature 
dimensions found by the PCA and MDS methods were not 
descriptive enough to cover all types of the observed 
modulations. However, we found that LLE performed as 
well as Isomap and both better than the linear 
dimensionality reduction methods. 

Code from the authors’ of LLE and Isomap was 
downloaded and run over the data structures used. Code 
for PCA, MDS, clustering, and modeling was written by 
Neda. 
 
Broad types 
 

We used the dimensions computed by the Isomap 
algorithm to classify interactions into functional types. We 
formalized classification using an iterative algorithm that 
at each step merged the most functionally similar 
interactions into the same cluster and averaged their 
corresponding transmission filters together. By examining 
the similarity of the clusters that are merged at each step 
of this algorithm, we can assess the significance of the 
merger: when two clusters are very similar, their merger 
score will be close to zero, and when two clusters are very 
different, their score will be greater than one.  

Figure 6A shows the results of this clustering 
algorithm when applied to 133 ganglion cells recorded 
from eleven retinas in the salamander, whose amacrine 
transmission profiles are shown in figure 6B. There was a 
clear break in the similarity of cell clusters, shown by a 
dashed line. At this point, there were seven distinct 
clusters with multiple members—monophasic ON, 
biphasic ON, biphasic OFF, monophasic OFF, biphasic 
weak-ON, fast biphasic, and slow biphasic (shown in 
colors)—as well as eight cells that belonged to their own 
cluster (shown in gray).  

The distinct clusters had members recorded from at 
least half of the eleven retinas used in this study and were 
routinely observed in other experiments, so we treated 
them as broad types. Unique cells were observed in a 
single retinal patch and were not commonly seen in other 
experiments, so we treated them as unclassified. The 
classification of cells into seven broad types is a robust 
property of the temporal dynamics of the transmission 
filters.  
 
 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

0.5

1

1.5

2

Significance threshold:
7 broad types
8 unclassified filters
        !

M
e
rg

e
r 

S
c
o
re

(n
o
rm

.)

Number of Clusters  
 
 
 

! "!! #!! $!!
%!&!'

!

!&!'

()*+,*-+./

0
)12
+
3,
-
%"
/

4

*565789-).4:00

;)789-).4:00

-15<4;)789-).

;)789-).4:=

;)789-).4<+9>%:=

;)789-).4?9-2

*565789-).4:=

@6.19--)?)+A

 
Figure 6. A: merger score as function of number of clusters. 
Significance threshold (red dashed line) identifies 7 broad types 
and 8 unique cells. B: amacrine transmission filters, of 133 
ganglion cells measured from 11 retinas with broad type 
indicated by color 

 
Fine types 

 
Because agglomerative clustering algorithms lump 

the transmission population into no more than seven broad 
functional types, we wanted to explore other clustering 
schemes that might resolve more types. Our approach was 
motivated by the observation that for data recorded from a 
single patch of the retina, where ganglion cells presumably 
shared inputs from some of the same amacrine 
interneurons and also both amacrine and ganglion cells see 
the same visual stimulus, we often found several 
transmissions with exceptionally similar functional 
properties. Building on this observation, we used a fine 
classification scheme, where we considered only cells 
from a single retinal patch. To divide the population into 

B 



 

 

the maximal number of cell types allowed by the data, we 
used K-means clustering to define cluster boundaries.  

Figure 7 shows examples of fine types formed from 
ganglion cells recorded in three different retinal patches. 
As more clusters were formed, the total difference 
between the transmission profile of individual ganglion 
cells and cluster averages decreased (Figure 7A). For the 
first retinal patch (top row), this decrease Δ(K) was large 
when the number of clusters was 7 or less, and dropped 
significantly when >7 clusters were formed. As a result,  
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we divided this group of transmissions into 7 fine types 
(Figure 7B). For the second and third retinal patches, a 
transition in the clustering score Δ(K) was found after six 
clusters. Consistent results were found for other retinal 
patches, with a total number of fine types ranging ≤7, 
depending in part on how many cells were recorded in a 
single patch. Our fine classification scheme was consistent 
with the broad scheme: fine functional types were either 
the same as a broad type or they were subtypes within a 
single broad type; the fine types never combined cells 
from different broad types. 
 

0 100 200 300
!0.04

0

0.04

Time(msec)

F
ilt
e
r(
s!
1
)

 
 

0 100 200 300
!0.04

0

0.04

Time(msec)

F
ilt
e
r(
s!
1
)

 

0 100 200 300
!0.04

0

0.04

Time(msec)

F
ilt
e
r(
s!
1
)

 

A B 



 

 

Figure 7. A: change in the mean-squared difference between 
cluster centers and individual cells Δ(K) plotted as a function of 
the number of clusters K for three retinal patches. Clusters were 
defined using K-means clustering. The decrease in mean-squared 
difference dropped sharply after (7/6/6) clusters were defined 
(top/middle/bottom) and reached a similar small value, indicating 
that these subsequent distinctions were not significant (dashed 
red line). B: transmission filters of cells simultaneously recorded 
from three retinal patches. Cells are divided into fine types, 
shown by their color.  

4. Conclusion 
 

We relied on quantitative methods of functional 
classification, involving several choices of clustering 
algorithm as well as several choices of response 
characteristic (using dimensionality reduction). One issue 
that should be addressed is how we can compare the 
performance of different dimensionality reduction 
methods, e.g. LLE versus Isomap. Moreover, because any 
method of functional classification requires some arbitrary 
choices, we should supplement this approach by some 
other measures of functional similarity such as analyzing 
the shared information between ganglion cells that can be 
calculated during stimulation with natural scenes and 
makes minimal assumptions about how ganglion cell spike 
trains encode the visual world.  
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