
Learning Feature-based Semantics with Autoencoder

Wonhong Lee wonhong@stanford.edu
Minjong Chung mjipeo@stanford.edu

Abstract

It is essential to reduce the dimensionality
of features, not only for computational effi-
ciency, but also for extracting the most mean-
ingful pattern of features. This is particu-
larly important in certain area such as com-
puter vision or natural language processing,
in which researchers usually have difficulty to
manually specify feature. In this project, we
applied the autoencoder model to represent
the semantics of phrases and evaluated it by
computing the correlation between the simi-
larity of autoencoded feature and the rating
manually tagged by human.

1. Introduction

Even though a lot of supervised learning algorithm
such SVM, linear regression works well with a set of
appropriate features, it is tedious to manually spec-
ify the feature of the input data in some domains like
computer vision or natural language processing, and
sometimes even quite difficult to define the features
representing the input data in an intuitive way. There-
fore, it is getting more and more important to reduce
the dimensionality of the data and to extract only a
set of meaningful features from them, which eventu-
ally leads to computational efficiency as well as the
learning accuracy.

Natural language processing is one of the most promis-
ing area for which the autoencoder approach can be
applied. Especially, compared to their syntactic infor-
mation, the semantics of word, phrase, or sentence is
quite difficult to be modeled accurately and evaluated
systematically. Furthermore, supervised approach to
learn semantic of word or phrase has certain limitation
to retrieve the labeled accurate training data. Turian
emphasized the efficiency of the semi-supervised ap-
proach for word representation.

In this project, we utilized autoencoder to automati-

cally learn useful features from the input data, and use
the compressed representation to find similar phrases
given a phrase, which is usually hard to manually spec-
ify the features.

First of all, we made a simple assumption about the
autoencoder model to reduce the number of parameter,
which leads to fast convergence compared to the old
version, and derived new update rule for this model.
We applied this model to visualize the trained hidden
unit to figure out what kind of interesting patterns our
model tried to extract from input features.

To apply our model to natural language processing, we
used Jeff Mitchell and Mirella Lapata’s phrase pairs,
with manual rating by humans, to train our autoen-
coder model, and to compute the Pearson correlation
between the manual rating and the autoencoded (com-
pressed) similarity to evaluate the model.

Furthermore, we compared the performance of our
modified autoencoder model to other method to
compute the similarity of phrases.

2. Background

2.1. Autoencoder

Autoencoder networks are feed forward neural net-
works that can have more than one hidden layer.
These networks attempt to reconstruct the input data
at the output layer. The targets at the output layer
are the same as the input data, thus the size of the out-
put layer is also the same as the size of the input layer.
Also it assume that the values of input data are equal
to the those of output data. In other word, it tries to
learn a function h(W,b) ≈ x; it is trying to find the
similarity between input features and output features.
By adjusting the number of nodes in the hidden layer,
we can discover very interesting feature between data
sets. From the interesting structure of autoencoder,
we also expect to find semantic correlations between
various sentences.

Learning Feature-based Semantics with Autoencoder

Figure 1. Autoencoder model

Autoencoder is unsupervised neural networks model
that are trained using a gradient descent method, such
as back propagation. Since the size of the hidden layer
in an autoencoder is smaller than the size of the input
data, the dimensionality of input data is reduced to a
smaller-dimensional code space at the hidden layer.
The outputs from the hidden layer are then recon-
structed into the original data at the output layer.
Like PCA, the autoencoders can give mappings in both
directions between the data and the code space.

2.2. Word representation

Semi-supervised approaches such as Ando and Zhang
(2005), Suzuki and Isozaki (2008) achieve remark-
abe results in terms of accuracy. However, those ap-
proaches are limited in choosing a training model be-
cause of their distinct characteristics. Therefore, it
is very difficult to utilize an exsiting supervised Natu-
ral Language Processing system in the semi-supervised
methods. Consequently, it is getting more preferable
to use unsupervised technics to induce word features.

Figure 2. Word representation

A word can be represented as a mathematical object
such as a vector associated with the word. Each
dimension’s value corresponds to a feature and might
even have a semantic or grammatical interpretation,

so we call it a word feature. However, in real world,
the labeled training data to represent words is rare
so that it results in poor estimation. Because of this
limitation, NLP researchers tried to investigate suit-
able unsupervised methods to induce word features.
One of powerful approach is to use clustering. This
technique was used by a variety of researchers. In this
project, we will choose data sets in those categories.

3. Model

3.1. Autoencoder

3.1.1. Assumption

This model starts from the assumption:

W2 = W1
T

In other words, we assume that the weight matrix of
the second layer is the transpose of the weight matrix
of the first layer, which effectively reduce the number
of the parameters of the weight matrix into half. With
this assumption, the output vector of the autoencoder
can be written by three parameters, W, b1, b2:

Y = WT f(WX + b1) + b2

The parameter b1, b2 represent the bias in the first and
second layer, respectively, and f(x) is the activation
function. In this project, we use tanh(x) as an activa-
tion function.

Finally, the cost function we should minimize is given
by:

J(W, b1, b2) =
1

2
(Y −X)T (Y −X)

3.1.2. Derivation

The update rule of the weight matrix W for the
stochastic gradient descent algorithm is given by:

W := W − α dJ

dW

Since X ∈ Rn and Y ∈ Rn, the cost function can
be written by the summation of the value for each
dimension.

J(W, b1, b2) =
1

2
(Y −X)T (Y −X)

=
1

2

n∑
i=1

(Yi −Xi)
2

Learning Feature-based Semantics with Autoencoder

Now, we can apply the chain rule to compute the
derivative of the cost function with respect to weight
parameter. (Note that W ∈ Rm×n, b1 ∈ Rm, and
b2 ∈ Rn)

dJ

dYi
=

d

dYi

1

2

n∑
j=1

(Yj −Xj)
2

= Yi −Xi

dJ

dWpq
=

n∑
i=1

dJ

dYi

dYi
dWpq

=

n∑
i=1

(Yi −Xi)
dYi
dWpq

The value of the i-th dimension of Y can be written
by:

Yi =

m∑
k=1

Wkif(

n∑
l=1

WklXl + b1k) + b2i

dYi
dWpq

=

n∑
i=1

(Yi −Xi)Wpif
′(

n∑
j=1

WpjXj + b1p)Xq

+ (Yq −Xq)f(

n∑
i=1

WpjXj + b1p)

To sum up, the update rule for each parameter is given
by: (derivation for b1 and b2 is similar)

dJ

dW
= W (Y −X)1T • f ′(WX + b1)XT

+ f(WX + b1)(Y −X)T

dJ

db1
= W (Y −X) • f ′(WX + b1)

dJ

db2
= Y −X

(Note that • is used to denote the element-wise prod-
uct operator, often called Hadamard product)

3.2. Phrase representation

We want to let our modified autoencoder model to
learn the semantic of phrase consisting of two words,
expecting each hidden unit to try to catch certain
meaningful pattern of the composition of words. Jeff
Mitchell and Mirella Lapata (2008) introduced vector-
based models of semantic composition of two words
and showed that the model works well on a phrase
similarity task. In this project, we introduced a differ-
ent form of composition of the vector representation
of words: concatenation.

Figure 3. Phrase representation

Since the autoencoder operates in unsupervised way,
we can take advantage of unbounded amounts of train-
ing data without any human effort manually labeling
the data. This approach is especially effective with
language model since it is quite difficult to define for
which each dimension of phrase feature vector should
represent.

After training the model by optimizing the weight ma-
trix as well as two bias vectors with the stochastic gra-
dient descent method, we can represent each phrase
by computing WX + b1, and compare the similarity
between those vectors which supposedly represent the
semantic of the phrases. The similarity measure we
used is Euclidean distance and cosine similarity, which
defined as:

EUC(u, v) = ||u− v||2
COS(u, v) =

u · v
||u|| · ||v||

4. Experiment

4.1. Visualization

To verify our model assumption, we wanted to visu-
alize what the model learned with autoencoder. The
model were trained by randomly picking one of the 10
images, then randomly sampling an 8x8 image patch
from the selected 512x512 images, and set the size of
the hidden units to 30 and the input units of 64. After
training the model, each cell in the below images rep-
resents the input image that maximizes the activation

Learning Feature-based Semantics with Autoencoder

of the corresponding hidden unit.

Figure 4. Visualization of trained hidden units

It is easy to find out that each hidden unit is trying
to capture a different pattern of input feature, which
leads to effective dimensional reduction.

4.2. Phrase similarity

The preprocessed datasets by Collobert and Weston’s
neural language model (2008) was used as input fea-
tures of this natural language processing experiment.
From the data sets, each word can be represented
as n-dimensional vecotor. (n=25,50,100,200) All the
datasets are provided in either scaled or unscaled ver-
sion.

As mentioned before, the stochastic gradient descent
method is used as an optimization algorithm to mini-
mize the cost function J(W, b1, b2). The learning rate
parameter is tried for 0.0002, 0.002, 0.02, 0.2. Fur-
thermore, in order to avoid the case the weight matrix
grows too big, we introduced so-called weight decay
term at the end of the cost function. The decay pa-
rameter is tried for 0.0001, 0.001, 0.01, 0.1. The com-
bination of the parameters of the best performance is
0.02 for learning rate and 0.001 for decay parameter.
The number of iterations is also tried differently, but
it tends to converge before 2 million iterations.

The bias parameters are initialized to zero vector and
weight matrix to randomly computed of the range
[0, 1√

q], when q is the dimension of the input feature.

We tried different initialization approaches, but there
wasn’t notable difference among them.

The Pearson correlation is used to verify the accu-
racy, which is computed between the similarities of
autoencoded phrases and the level of similarity manu-
ally rated by human. For the Euclidean distance mea-
sure, there should be a negative correlation, and for
the cosine similarity, it should be as close as possible
to 1.

For comparison, we also implemented several different
models, including sparse autoencoder. In the table
below, ”AUTO” represents for the similarity of au-
toencoded phrases, ”RAW” for the uncompressed con-
catenated phrase vectors, ”PAIRAVG” for the pair-
wise average similarity between corresponding words
of phrases, and ”SPARSEAUTO” for the sparse au-

toencoded phrases, respectively.

Measure Correlation
EUC, AUTO -0.0842
COS, AUTO 0.0502
EUC, RAW 0.0341
COS, RAW -0.0201
EUC, PAIRAVG 0.0341
COS, PAIRAVG 0.0063
EUC, SPARSEAUTO 0.0742
COS, SPARSEAUTO 0.0020

Table 1. Correlation between similarities computed
by different model

Note that the ”RAW” and ”PAIRAVG” models do
not utilize the training data to learn parameters,
just computing the similarity given words and their
representation.

5. Discussion

Even though the Pearson correlation value of our Au-
toencoder model is not significant compared to other
measures, it consistently showed a negative correla-
tion, in case of the Euclidean distance measure, with
various combination of parameters such as learning
rate or weight decay. For cosine similarity measure,
it still shows good performance with relatively higher
positive correlation compared to other ones.

In the other hands, the raw representation of phrases,
which is just concatenation of two words, continuously
showed inconsistent correlation with different param-
eter combination, nearly random pattern. It is also
true for the pairwise average similarity between corre-
sponding words. In this result, we can conclude that
these two model to represent phrase consisting of two
words failed to effectively capture the essential parts
of input features, while the autoencoder model showed
consistent correlation pattern.

Although it shows consistent correlation pattern, the
absolute value is not significant enough to conclude
that there is strong correlation between them. There
are several factors which possibly have an effect on the
experiment result.

First of all, the training data size is not large enough
to cover large dimension of the input feature, such as
100 or 200 dimensional representation of Collobert and
Weston’s embeddings. Since we can take advantage of
the power of unsupervised learning by utilizing large
unlabeled, unprocessed dataset, this is one of the fu-
ture work which should be followed by this research.

Learning Feature-based Semantics with Autoencoder

Furthermore, we can still utilize a variety of different
feature vectors to represent each word, not only the
Collobert and Weston’s neural language model. Since
the autoencoder tries to capture interesting pattern
of concatenated words, we believe that uncompressed
raw vector representation should be applied for this
model, in which each dimension of feature has certain
meaning such as POS tag, frequency, and other syn-
tactic or semantic information.

Finally, a variety of composition method to represent
phrases given words can be tried as input feature of
this model. These include Jeff Mitchell and Mirella
Lapata’s additive, multiplicative, etc.

6. Acknowledgement

Thanks to Richard Socher for useful discussion.

References

Ronan Collobert, Jason Weston. 2008. A unified archi-
tecture for natural language processing: deep neural
networks with multitask learning. ICML ’08 Pro-
ceedings of the 25th international conference on Ma-
chine learning

Jeff Mitchell, Mirella Lapata. 2008. Vector-based Mod-
els of Semantic Composition. In Proceedings of
ACL-08: HLT

Joseph Turian, Lev Ratinov, Yoshua Bengio. 2010
Word representations: A simple and general method
for semi-supervised learning. Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics

R. Ando, T. Zhang. 2005. A high- performance semi-
supervised learning method for text chunking. ACL

J. Suzuki, H. Isozaki. 2008. Semi-supervised sequen-
tial labeling and segmentation using giga-word scale
unlabeled data. ACL-08: HLT (pp. 665673).

Richard Socher. 2010. Deep Chinese Character De-
partment of Computer Science, Stanford University

Andrew Ng. 2010. Sparse Autoencoder Department of
Computer Science, Stanford University

