
Distributed Deep Learning
Parallel Sparse Autoencoder

Abhik Lahiri
Raghav Pasari

Bobby Prochnow

December 10, 2010

1 Introduction

Much of the bleeding edge research in the areas of
computer vision, natural language processing, and
audio recognition revolves around the painful and
time consuming process of hand-picking features from
training data. Many researchers spend decades ex-
perimenting with complex feature selection processes
in the hopes of improving the performance of learning
algorithms.

Deep learning approaches attempt to replace the
practice of hand-picking features by instead algorith-
mically determining structure or organization hidden
within the training data. Some early deep learning
approaches have shown great promise - even outper-
forming many of the state-of-the-art algorithms that
operate on hand-picked features.

Deep learning algorithms, however, are computa-
tionally expensive. Even on powerful computers, it
can be impractical to have the algorithms learn on a
sufficient amount of input data, making these algo-
rithms considerably less practical for many problems.
Parallelizing these algorithms and running them in a
multi-core or distributed setting could result in a sig-
nificant speedup. This, in turn, makes it more practi-
cal to feed larger amounts of data into the algorithms
- which will improve their performance considerably.

Thus, our goal is to understand how to scale deep
learning methods to function on large clusters with
many cores and machines. For the extent of this pa-
per, we focused on parallelization of the sparse au-
toencoder learning algorithm. Towards this goal, we
first did a survey of serial optimization algorithms for
the sparse autoencoder (stochastic gradient descent,
conjugate gradient, L-BFGS). We then parallelized
the sparse autoencoder using a simple approximation
to the cost function (which we have proven is a suf-
ficient approximation). Finally, we performed small-
scale benchmarks both in a multi-core environment
and in a cluster environment.

2 Serial Sparse Autoencoder

The sparse autoencoder is a deep learning variant of
a neural network used to represent the identity func-
tion on unlabeled training data. To force the network
to find structure in the data, we enforce a sparsity
constraint that ensures that each of the hidden nodes
fires very infrequently over the course of the training
set.

2.1 Stochastic Gradient Descent

Our naive approach used stochastic gradient descent
to optimize the standard cost function:

1
2 (h(x(i))− x(i))2 + λW

2

∑
l

∑
i

∑
j

(W
(l)
ji)2

Additionally, to enforce sparsity, after each iteration
of stochastic gradient descent, we performed the fol-
lowing update on the biases for the hidden layer:

b
(1)
i := b

(1)
i − aβ(ρ̂i − ρ)

where ρ̂i is a running estimate of the probability of
the hidden node i firing and ρ is the desired sparsity.

2.2 Batch Optimization Algorithms

For optimization algorithms that iterate on entire
batches of examples (L-BFGS and conjugate gradi-
ent), we integrate the sparsity constraint directly into
the cost function and use the kL divergence to mea-
sure the difference between the current and target
sparsities:

1
2m

m∑
i=1

(h(x(i))− x(i))2 +
λW
2

∑
l

∑
i

∑
j

(W
(l)
ji)2 +

λρ
∑
j

KL(ρ||pj)

where ρ is the desired sparsity and pj is the current
sparsity for hidden node j over the entire batch of
examples.

2.3 Comparison of Algorithms

In all benchmarks, the training examples are a ran-
dom sampling of 8x8 patches from a set of ten
512x512 images (courtesy of Bruno Olhaussen). We
restrict the hidden layer of the network to 30 nodes,
set λW = .002, set λρ = 4, and target the probability
of a hidden node firing to be .002.

1

On image input, we expect the learned weights for
the hidden nodes of the sparse autoencoder to repre-
sent edges of independent orientation.

Figure 2.3.1. Sample learned hidden weights

Quantifying how close learned weights were to this
goal is difficult - as extremely small differences in the
value of the cost function, sparsity, or error can result
in highly varied change with respect to how ”edge-
like” the learned weights are. For our purposes, how-
ever, it sufficed to quantitatively analyze how well the
algorithms do with respect to minimizing the cost
function (and then as a sanity check, visualize the
hidden weights to verify the expected output).

In practice, quality output is achieved through 4
million iterations of stochastic gradient descent, or
500 iterations of L-BFGS/conjugate gradient with a
100K batch size. Below are the averaged results for
3 independent trials.

Mean Execution Time (seconds)
Stochastic Gradient Descent 648

Conjugate Gradient 1098
L-BFGS 653

Figure 2.3.2. Average cost function over time

(To calculate the cost function for stochastic gra-
dient descent, we calculated the batch cost function

on a set of 100k examples every 8000 iterations).

While stochastic gradient descent performs well in
this case, it does not lend itself to much parallelism,
as iterations must be performed in sequence, and each
iteration is extremely cheap. Both L-BFGS and con-
jugate gradient operate on batches of examples, al-
lowing for potential parallelism; however, conjugate
gradient takes about twice as long as L-BFGS to learn
the autoencoder. For this reason, we chose to use L-
BFGS in our following parallel implementation.

3 Parallel Sparse Autoencoder

Our parallel algorithm is quite natural - we use a
serial implementation of L-BFGS with a parallel cost
function:

proc ParallelAvgCostFunction(~W, ~X) ≡
foreach t parallel do
~Xt := GetThreadData(~X, t);

costt, gradt := SerialCostFunction(~W, ~Xt);
end
avgCost := average(. . . costt . . .);
avgGrad := average(. . . gradt . . .);
return avgCost, avgGrad;

.

This assumes the ~Xt is the same size for all t - so
that all examples are considered with the same weight
(when the costt values are averaged), but it’s not dif-
ficult to account for cases where this does not hold.
Also note that the algorithm is merely psuedocode
here - among other things, in the implemented algo-
rithm, ~X is stored permenantly for each worker once,
and does not need to be repeatedly computed or com-
municated between threads.

At first glance, this algorithm seems triv-
ially correct; however, because of the kL di-
vergence for the sparsity term, the above func-
tion does not necessarily compute the correct
cost function such that ParallelAvgCostFunction(W,X)
= SerialCostFunction(W,X). Regardless, we can
prove that ParallelAvgCostFunction is an extremely
good approximation - and the results confirm
this. Also note that the gradient computed by
ParallelAvgCostFunction is correct with respect to the
cost function ParallelAvgCostFunction computes.

2

3.1 Alternatve Algorithm

From the cost function definition, we notice that the
error-squared term is trivially parallelizable - each
thread can compute the term on a different subset
of patches and then the results are averaged - and
the weights-squared term is relatively cheap to com-
pute (so it does not need to be parallelized), but the
kL divergence term (the last term) is non-trivial to
make parallel.

An intuitive way to compute the kL divergence cor-
rectly in a parallel setting is with the following algo-
rithm:

proc ParallelExactCostFunction(~W, ~X) ≡
foreach t parallel do
~Xt := GetThreadData(~X, t);

costt, gradt, pt, at := SerialErrorSquared(~W, ~Xt);
end
avgCost := average(. . . costt . . .);
avgGrad := average(. . . gradt . . .);
p := average(. . . pt . . .);
foreach t parallel do
~Xt := GetThreadData(~X, t);

sGradt := SparsityTermGrad(~W, ~Xt, p, at);
end
wCost,wGrad = SumWeightsTerm(W);
cost = avgCost + wCost + SparsityTermCost(ρ, p);
grad = avgGrad + wGrad + sum(sGradt);
return cost, grad;

.

The complexity (and potential performance hit)
from this approach arises from the fact that in order
to calculate the gradient with respect to the kL term
on a batch of examples, the thread needs the correct
value of pj in addition to all of the activations at cal-
culated on the batch. In an actual implementation,
at would not be communicated between threads. The
worker thread would merely store at locally in the call
to SerialErrorSquared for later use in the SparsityTerm
function.

3.2 Parallel Correctness

Fortunately, we can prove high probability bounds on
the difference between ParallelAvgCostFunction and
SerialCostFunction. We’ll start, however, by proving
a few basic facts.

Our training set consists of iid examples, and for
each training example, the hidden node j activates by

a Bernoulli trial with probability pj - the true prob-
ability of hidden node j firing on a random example

from the training set. Let p
(i)
j be the i’th thread’s ap-

proximation to pj . By definition, p
(i)
j is the mean of

the m
t Bernoulli trials that determine the activation

of nj on thread i’s chunk of the training set.

Fact 3.1. With probability at least

1− 2th exp
(−2m

t exp
(
2ε
h

))
there does not exist a thread i and hidden node j

such that |p(i)j − pj | > exp ε
h .

Proof By a corollary of the Hoeffding inequality
(proven using the union bound [1]), since we have t∗h
independent estimations of pj , we have the following:

P (¬∃j ∈ [h], i ∈ [t] : |p(i)j − pj | > exp
ε

h
)

≥ 1− 2th exp

(
−2m

t
exp

(
2ε

h

))

Fact 3.2. Assume |x− y| ≤ z. This implies | log x−
log y| ≤ log z.

Proof Without loss of generality, assume x > y.

|x− y| ≤ z (1)

⇒ x− y ≤ z (2)

⇒ x ≤ y + z (3)

⇒ log x ≤ log(y + z) (4)

⇒ log x ≤ log y + log z (5)

⇒ log x− log y ≤ log z (6)

⇒ | log x− log y| ≤ log z (7)

Step (1) is the assumption made in the fact state-
ment. Step (2) followed from our assumption without
loss of generality. Step (4) followed from the fact that
log is an increasing function. Step (5) is justified by
the fact that log is concave. Step (7) is justified by
the fact that x ≥ y implies log x ≥ log y because log
is increasing.

Fact 3.3. Assume |p(i)j − pj | ≤ ε
h . This implies

| log p
(i)
j − log pj | ≤ log ε

h and | log(1− p(i)j)− log(1−
pj)| ≤ log ε

h .

3

Proof Apply Fact 3.2 with x = p
(i)
j , y = pj , z =

exp ε
h .

Similarly, |p(i)j − pj | ≤ ε
h ⇒ |(1− pj)− (1− p(i)j)| ≤

exp ε
h . Apply Fact 3.2 with x = (1 − pj), y = (1 −

p
(i)
j), z = exp ε

h .

Theorem 3.1. Let t be the number of threads, m be
the total number of training examples, h be the num-
ber of hidden nodes, and ε be some permissable error.
Let C be the actual cost function on W and C∗ be the
approximation calculated by ParallelAvgCostFunction.

P (|C − C∗| ≤ λρε) = 1− 2th exp
(−2m

t exp
(
2ε
h

))
Proof Consider the cost function split into terms:

C = CE + CW + CP

CP = λρ
∑
j

ρ log
ρ

pj
+ (1− ρ) log

1− ρ
1− pj

C∗ = C∗
E + C∗

W + C∗
P

C∗
P =

1

t

t∑
i=1

λρ
∑
j

ρ log
ρ

p
(i)
j

+ (1− ρ) log
1− ρ

1− p(i)j

The C∗
E = CE follows from the assumption that

all threads have exactly m
t examples in their chunk.

C∗
W = CW trivially, as W is the same for all threads.

This leaves us with needing to bound the value |CP −
C∗
P |. Assume that |p(i)j − pj | ≤ exp ε

h . By Fact 3.1,
we know this occurs with probability at least 1 −
2th exp

(−2m
t exp

(
2ε
h

))
.

|CP − C∗
P |

= |λρ
∑
j

ρ log
ρ

pj
+ (1− ρ) log

1− ρ
1− pj

− 1

t

t∑
i=1

λρ
∑
j

ρ log
ρ

p
(i)
j

+ (1− ρ) log
1− ρ

1− p(i)j
|

= |λρ
∑
j

[−ρ log pj − (1− ρ) log(1− pj)

+
1

t

t∑
i=1

ρ log p
(i)
j + (1− ρ) log(1− p(i)j)]|

= |λρ
∑
j

[ρ(log pj −
1

t

t∑
i=1

log p
(i)
j)

+ (1− ρ)(log(1− pj)−
1

t

t∑
i=1

log(1− p(i)j))]|

= |λρ
∑
j

t∑
i=1

[
ρ

t
(log pj − log p

(i)
j)

+
1− ρ
t

(log(1− pj)− log(1− p(i)j))]|

≤ λρ
∑
j

t∑
i=1

[
ρ

t
| log pj − log p

(i)
j |

+
1− ρ
t
| log(1− pj)− log(1− p(i)j)|]

≤ λρ
∑
j

t∑
i=1

[
ρ

t
log exp

ε

h
+

1− ρ
t

log exp
ε

h
]

= ρ
∑
j

t∑
i=1

[
ρ

t

ε

h
+

1− ρ
t

ε

h
]

= λρ
∑
j

[ρ
ε

h
+ (1− ρ)

ε

h
]

= λρh[ρ
ε

h
+ (1− ρ)

ε

h
] = λρh[

ε

h
] = λρε

Aside from algrebraic manipulation, we used the

fact that |
∑
x

f(x)| ≤
∑
x

|f(x)|, and we used substi-

tution using Fact 2.3.

This result proves that ParallelAvgCostFunction is
an extremely good approximation, so long as m

t is
a reasonable value. For instance, in our most typi-
cal benchmark, we have m = 100000, h = 30, and
pretend we were testing on t = 1000 nodes. The dif-
ference between ParallelAvgCostFunction and the true
cost on those examples will be no more than λρ10−100

with probability at least 1− 1.77× 10−82.

3.3 Multi-core Benchmarks

Using Parallel Python, we implemented
ParallelAvgCostFunction for testing in a multi-
core environment - a quad-core, hyper-threading
enabled desktop (Intel Core i7 920 @ 2.67GHz,
6.00 GB RAM). According to Intel, hyperthreading
improves performance by approximately 30% [2].
We ran benchmarks to demonstrate parallel speedup
with respect to batch size. Each execution time was
averaged over 3 independent trials.

(We also benchmarked ParallelExactCostFunction.
On 100K batch size, ParallelExactCostFunction was
an average of 8 to 12 seconds slower than
ParallelAvgCostFunction, regardless of the number of
threads.)

4

Total Running Time (seconds)
Workers 1 2 4 8

1K 9 10 13 16
10K 64 57 64 75
100K 650 440 370 350
1M 6431 4049 3425 3360

Figure 3.3.1. Average speedup across batch size

3.4 Cluster Benchmarks

The Parallel Python framework used in the multi-
core benchmarks is unfortunately ill-suited for learn-
ing the sparse autoencoder in the clusters. It is not
possible (without modifying the source to Parallel
Python) to have worker threads maintain copies of
their own example sets in memory, meaning that the
threads would have to hit the disk every iteration.
Fortunately, another 229 group (see Acknowledge-
ments) developed the QJAM parallel framework for
Python.

The following benchmarks were performed on the
yggdrasil machines courtesy of the Stanford AI Lab:

Total Running Time (seconds)
Workers 1 2 4 8

1K 76 92 137 275
10K 370 170 173 270
100K 5030 2350 1253 914

Figure 3.4.1. Average speedup across batch size

While the performance of the framework suffers on
smaller batch sizes (because of the high cost of com-

municating within a cluster), a speed up of 5.5 on
8 cores for a batch size of 100K is quite significant.
For more analysis of the cluster benchmarks, see the
project paper written by the framework’s creators.

4 Conclusions

In testing serial optimization algorithms for the
sparse autoencoder, we determined that L-BFGS
demonstrated faster convergence than conjugate gra-
dient, and thus elected to use L-BFGS in our parallel
implementation.

We also demonstrated that our approximation
ParallelAvgCostFunction is an intiuitive and extremely
accurate approximation to the actual value of the cost
function.

The parallelism obtained on the QJAM framework
with our parallel implementation of the sparse au-
toencoder is quite promising, especially when con-
trasted with the results obtained by Parallel Python
in a multi-core environment. With a batch size
of 100K, the parallel python framework could only
achieve a 1.75x speedup on 4 workers, compared to
the full 4x speed up on 4 workers achieved by the
QJAM framework. The difference in serial execution
time between our multi-core test machine and yg-
gdrasils is puzzling (100K patch size: 5030 seconds
on yggdrasil compared to 650 seconds on our test
machine), but the slower serial execution time alone
cannot account for the better parallelism achieved on
QJAM; with 1M patches and a serial execution time
of 6431 seconds, the Parallel Python framework still
only achieved a 1.88x speed up on 4 workers.

5 Acknowledgements

We would like to thank the following: Professor Ng
and Adam Coates for advising this project; Juan
Batiz-Benet, Quinn Slack, Matt Sparks, and Ali
Yahya for their work on the QJAM Python parallel
framework; Milinda Lakkam and Sisi Sarkizova for
their collaboration on the sparse autoencoder.

6 References

[1] http://www.stanford.edu/class/cs229/notes/cs229-
notes4.pdf
[2] http://software.intel.com/en-us/articles/
performance-insights-to-intel-hyper-threading-
technology/

5

