
Semantic Search in Emails

Navneet Kapur, Mustafa Safdari, Rahul Sharma

December 10, 2010

Abstract

Web search technology is abound with techniques to tap into the semantics of information. For email
search, such techniques are almost non-existent in the mainstream. Major email services provide only
syntactic searching to their clients. Our idea is to use PCA-based techniques to mine the underlying semantic
structure present in the mailbox of a person. For the dataset, we use the email dataset provided by Enron
corporation. We demonstrate the applicability of LSI to email search and discuss the various information
retrieval techniques used to improve the search performance. Lastly, we propose a method to update the
weights so that our search engine learns user preferences over time.

1 Introduction

Email users frequently have problems searching and locating specific emails in their accounts. The primary
reason is the email providers only provide syntactic search utilities. There are several problems with syntactic
search:

• Missing results : If the user query does not contain the exact words which occur directly in the emails
then syntactic matching will miss it. Thus this method performs worse if the user gives more information!
Since the user does not want to miss the document he is searching for, his queries will be short. This
results in the next problem.

• Too Many Results : A lot of mails can syntactically match the query. Hence the user has to spend
a lot of time looking over many irrelevant mails before the desired one is found. There is no concept of
sorting the results based on relevance here, as their is no measure of relevance. Either the words in query
occur in the email or they do not.

A email dataset is a good example of a set of documents related to each other in a semantic way. Email
threads, replies and forwarded mails share a common context and have a “latent” or hidden structure, which
makes applying semantic search in this domain all the more apt.

2 Our Algorithm

Following the traditional literature on information retrieval, we will refer to the dictionary words as terms, and
emails as documents (m in number). The algorithm has some steps which are performed offline and some which
are performed online when the user gives a query. Each step is discussed in detail in the following sections. The
outline of our algorithm is as follows:

• – When offline, run through all the documents in the mailbox to construct a list of terms occurring in
documents. The terms are stemmed before being added to the list. Stop words are ignored. These
are words like ‘a’, ‘an’, ‘the’, which have no classification value.

– In addition, we maintain a list of unstemmed tokens. We do not remove those words which occur
only once or twice (stop words are removed here as well).

• – Construct the term document matrix M . Mij is the number of times term i occurs in document j.
Adjust entries of Mij based on the selected weighting scheme and get the a k-rank approximation:
M ≈Mk = UkΣkV

T
k . Store Uk, Σk and Vk in a file. This completes the offline steps.

– Construct a binary term-document matrix, S, corresponding to the unstemmed token list.

• – When online take the input query and construct the query vector (q). Transform q to reduced space:
qV = qTUkΣ−1k . Dot-product qV with the rows of Vk and output the results with the dot-products
higher than a threshold.

1

– Construct qns such that qnsi = 1 if token i in the unstemmed list occurs in the query and 0 if not.
Then, we return those documents whose dot-products with qns equal ‖qns‖2.

3 The Storyline: Implementation and Design Decisions

3.1 Does it Work?

We first implemented a naive version of LSI based on wordcount model and unprocessed emails (no stemming,
no stop word removal, etc.) and tested whether dropping rank gets better results than the vector space model.

Consider the case of searching the mails using the query reimbursement in the all_documents folder of
scott-s from the Enron dataset. There are several emails related to reimbursements which concern redressal
of greviances and payment of compensation to the complainants for punitive damages. But some of these do
not contain reimbursement syntactically. In place of reimbursement they use its synonyms: say compenstation.
Therefore, our proposed method should find mails talking about reimbursements even though if they do not
contain the word reimbursement.

We executed LSI for the search query reimbursement. To gauge the effect of the rank k on the results, we
computed the dot-product of the search query qV with Vk for various values of k ∈ [1,m]. We analyzed the top
ranked results that the algorithm outputs.

• The most relevant email returned by the search result, i.e. the email with the highest dot-product value,
contained the query term reimbursement. Its context was the same as the majority context of emails
containing this term (i.e. greviance redressal).

• Emails containing compensation and based on the same context scored higher than those containing
reimbursement but based on a different context. Emails containing reimbursement based on a non-
majority context scored higher in relevance than other emails.

• As rank-approximation k was varied in [1, c], the following trend was observed:

– Dot-products of query qV with the relevant emails increased upto a maximum value at some kmax,
and decreased thereafter.

– Dot-products of query qV with the non-relevant mails followed the opposite trend: decreasing steeply
till kmax, and either increasing or decreasing much slower thereafter.

Overall, the dot-product of the search query qV with Vk decreased substantially after kmax.

This trend was observed consistently across a wide range of queries. Figure 1 below depicts the trend of the
dot-product of search query qV with the most relevant mail (62), the most relevant mail containing synonym
of the query (106), and an unrelated mail (1).

Figure 1: Dot Product as a function of the rank approximation k

As is evident from Figure 1, the proposed algorithm is successful and capturing the latent semantics of the
email dataset and matching this against the query. For low values of k, we are underfitting. The k < kmax

2

dimension space is not sufficient to capture the structure of our data. When we increase k our results get better.
But once we have enough features to capture the data if we add more features by increasing the rank then we
are adding noise.

We got encouraging results from LSI: the documents had the structure for LSI to work.

3.2 Conditioning the Data

Since the dataset consisted of emails, there are bound to be abnormalities in the form of spelling mistakes or
irrelevant terms occurring in spam. Hence we only consider the words occurring at least 3 times in the mailbox
to be included as a term. We consider the stemmed form of the words as terms and we also stem the query.
We used the Porter Stemmer described in [1]; it was more effective than the other stemmers we tried.

We remove the most frequently occurring words, called stop-words, like ‘a’, ‘and’, ‘the’, etc., which do not
contribute to the semantics of the document. The stop word list consists of 119 most common stop words from
literature. Then, we moved on to try different weight models.

3.3 Adding Weights

Proper term weighting can greatly improve the performance. We modified our initial wordcount model: Mij was
the number of times term i occurs in document j. The weighting scheme is composed of three different kinds of
weights, the product of which gives us the relevant (Weighted) Term-Document matrix. Hence Mij = LijGiNj .

3.3.1 Global Weights - Gi

Gi is the global weight for term i. [3] prescribes IGFL and IDFB weighting scheme for the Term-Document
Matrix and IDFB for the query. It recommends IGFL over IDFB.

(Gi)IGFL = log(
Fi

ni
+ 1)

(Gi)IDFB = log(
N

ni
)

Here, Fi = total occurrences of term i in the email database ni = number of documents in which term i occurs
and N = total number of documents.

But in emails, some important terms occur in only a few mails. The user is frequently interested in such
terms. But IGFL will give such important terms very low weights. From our experimentation, we found that
IDFB outperforms IGFL by huge margins.

3.3.2 Local Weights - Lij

Lij is the local weight of term i in document j. [3] suggests that the SQRT and LOG (sublinear weights)
schemes are good for this purpose. We tested both and found the behavior to be near identical for our purpose.
We chose SQRT (Lij =

√
fij − 0.5 + 1, where fij is frequency of term i in document j) as our choice of local

weight. The weight outperformed word count model for all queries. A comparison of Top-10 results with the
term frequency case is given in Figure 2. The query is court hearing.

Figure 2: Comparison with local weights as SQRT and as wordcount. The global weight is IDFB

3

3.3.3 Normalization - Nj

Nj , the normalization factor for document j, attempts to compensate for the fact that documents are of different
lengths. [3] suggested a COS scheme for normalization. This scheme works well for us.

Nj =
1√∑m

i=0(GiLij)2

3.4 Heuristics for Further Improvement

3.4.1 Query Expansion With Synonyms

The user could type in a query which has a word that has not occurred in any email in the database. In such
cases when a word cannot be found or when we want to implicitly increase the weight of a word in the query,
we find a synonym for that word which exists in the present vocabulary and insert it into the query. We use
Nltk.word.corpus for this. This helps improve the results marginally. Blue bars below represent the case when
synonym is added.

Figure 3: Query: “New Appointment” - Synonym Added : “assign”

3.4.2 Union with Syntactic Query

The results of the above algorithm may still not contain the desired mail. The reason lies in the conditioning
steps mentioned in Section 3.2. Removal of words occurring less than 3 times in the database could cause the
removal of many relevant terms. The user might remember that he had intentionally misspelled a word in a
particular mail and he wants that particular mail.

This problem is overcome by including the mails which syntactically match the query exactly. The list of
tokens considered for syntactic matching is not stemmed. We consider only those mails which have all the
terms in a query. This “all-or-nothing” approach in conjunction with the semantic results covered almost all
the relevant mails for any query.

3.4.3 Rocchio’s Relevance Feedback Algorithm

For this algorithm, the user provides feedback about relevant and irrelevant documents. The approach proposes
using the expanded query q′V .

q′V = αqV + β
1

| Dr |
∑

dj∈Dr

dj − γ
1

| Dnr |
∑

dj∈Dnr

dj

Here, Dnr is the list of irrelevant mails and Dr is the list of relevant mails. Setting the values of α, β and γ to
be 1, 0.75 and 0.15 respectively and running the algorithm after giving it feedback improved results noticeably.

3.5 Helping LSI Learn

The user might opt to give feedback at times to improve the results but if user queries at a later time using
the same query, it would be irritating to see the results that had been marked irrelevant previously still show
up. So, it makes sense to record user feedback for future use. We do this by updating Vk. We tried out 2

4

methods of updating Vk. We used the following interpretation for the first one: there are latent variables called
topics. Each term ui is relevant to topic t by a quantity uit. The relevance of each topic for the mailbox is stt.
The relevance of document vj to to topic t is given by vtj . Hence for our weighted term document matrix M ,
Mij =

∑
t uitsttvtj

The ith coordinate of qV indicates how important the topic i is to the user query. Hence we found the major
topics the query qV is related to, by taking the indices in qV corresponding to the highest components (a cut-off
was set here), and then reducing the components of the irrelevant documents in those topics.

The other method is to take the vector space approach and reduce the component of the irrelevant mail in
the direction of qV . So dj ∈ Dnr is updated as follows: d′j = dj − 1

2 (dj · qV) qV
‖qV ‖2

Figure 4: Top-10 Results for “Court Hearing” for the Basic, Rocchio-refined and Learning Schemes

4 Conclusion

Our search engine, NAMURA, when tested against existing desktop and email search engines returned im-
proved results. The blue bar represents common results. The red bars show extra relevant results that we got.

(a) Against Desktop Search Engines (b) Against Email Search Engines

Figure 5: Comparing Against Existing Search Engines

Our work clearly shows the importance of LSI-based techniques to email and desktop search.

5 References

1. Porter, M. “An algorithm for suffix stripping.” Program 14.3 (1980): 130-137

2. Manning, C., Raghavan, P., Schutze, H. “Introduction to Information Retreival”

3. Erica Chisholm., Tamara G. Kolda, “New Term Weighting Formulas For the Vector Space Method in
Information Retrieval”

5

