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1 Introduction

Recent development in microarray technology
have made it possible to check biological samples
for the expression of many different genes (hun-
dreds of thousands) at once. This has opened
the possiblity of screening for influential genes
in cases of disease succeptibility, genetic disor-
ders, cancer, and other biological problems. In
the paper by Shen-Orr et.al.[2] that inspired this
project, the authors worked with blood samples
from kidney transplant patients. Their goal was
to determine which genes influenced the accep-
tance or rejection of transplant genes when they
were expressed.

When using these gene expression chips, a
blood sample is taken from a patient. The en-
tire sample is lysed, and the mRNA (expressed
genes) from the entire sample are processed and
run on the microchip. As a result, the microchip
will measure expressed genes from a mixture of
several different cell types; it is difficult to phys-
ically separate the individual cell types before
running them on the chip and doing so can ac-
tually alter the gene expression within the cell,
obscuring the results of the experiment.

The idea behind the work of Shen-Orr et.al.[2]
is that, prior to lysing the cells and measuring
the gene expression, a small subsample can be
taken and the distribution of cell types can be
counted with a Coulter Counter, giving an esti-
mate of the cell type distribution in the original
sample. This additional information can then be
used to deconvolve the gene expression data to
obtain expression levels on a cell-type by cell-
type basis. This can give much better resolution

for seeing differences in expression in particular
cell types within the sample, opening the way to
interesting biological discoveries. Figure 1 shows
a schematic for the data we intend to use.

Figure 1: From the sample made up of several
cell types, it is relatively easy to measure the
total sample gene expression and the distribution
of cell types within the sample.

1.1 Problem Setup

From the gene expression chip, we observe mea-
surements Xij of the gene expression of gene j
in patient i. Suppose we have J genes and I pa-
tients. We can then write these measurements
as an I × J matrix X. Each row corresponds to
a particular blood sample, and each column cor-
responds to the gene expression of a particular
gene.

Suppose that there are K dominant cell types
in the mixture. Each blood sample contains a
mixture of these different cell types, each with
its own characteristic gene expression pattern.
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Thus the expression of a particular gene j in a
particular sample i is a weighted mixture of the
gene expression pattern for each of the cell types
present:

Xij =

K∑
k=1

WikHkj .

Here Wik is the fraction of blood sample i made
up of cell type k, so

∑K
k=1Wik = 1 and Wik ≥ 0.

Hkj is the expression of gene j in cell type k.
As matrices, we can write X = WH, where X

is I×J , W is I×K, and H is K×J . The restric-
tions on W imply that it is a stochastic matrix.
This has a nice geometric interpretation. The
rows of X (gene expression patterns for a partic-
ular blood sample) are convex combinations of
the rows of H (archetypal gene expression pat-
terns for cell types). Therefore the rows of X lie
within the convex hull of the rows of H. This
will become a useful view later.

The Microarray measures all of the elements
of X, and the Coulter counter can measure indi-
vidual rows of the W matrix. The quantity of in-
terest is H. If it can be estimated, then the gene
expression is known on a cell-type by cell-type
basis. This would allow comparison in the gene
expression on the level of individual cell types be-
tween populations. Thus biological effects that
depend on gene expression in a particular cell
type can be observed.

In the original Shen-Orr et.al. paper[2], the
corresponding rows of W were measured for ev-
ery blood sample, giving the entire W matrix.
This is an expensive procedure; I am interested
in extending these methods to partial measure-
ments of W .

2 Estimating H

2.1 When W is known (Shen-Orr et.
al)

In the case where W is known completely (so we
measure Wi· for each sample i), this problem is
handled in Shen-Orr et.al.[2]. We can imagine
modeling X = WH + ε where ε is just uniform

normal noise (for convenience). In this case we
can estimate H simply by solving the multivari-
ate regression problem X = WH, since both X
and W are known. The closed form solution is
just H = (W TW )−1W TX as we would expect.
Shen-Orr. et. al.[2] carried this estimation out
successfully on the kidney transplant data and
were able to observe interesting differences in the
H matrix.

2.2 When ≥ K rows of W are known

Now suppose that, due to the expense of mea-
suring rows of W , we are able to only partially
measure W . This means that we have measured
the cell distribution of some of the samples, but
not all of them, meaning that W has some un-
known rows. In particular, let Ĩ be the number
of observed rows of W , and for now assume that
K ≤ Ĩ < I (I will address the other case later).

Since Ĩ ≥ K, the problem of estimating H
is still identifiable. In particular, if we formed
the modified matrices X̃ and W̃ containing only
the rows for which W was estimated, the form
of H will be exactly the same. Thus the prob-
lem becomes X̃ = W̃H, and we can again es-
timate H through multiple linear regression as
H = (W̃ T W̃ )−1W̃ T X̃.

However, this seems to throw away useful in-
formation. Even though we have only measured
W for a subset of the rows, we have measure-
ments X for all rows. This should be useful to
reduce the variance of our H estimate.

If we knew H, we could estimate the missing
row of W from H and X by regression. Note that
we can write XT = HTW T . If the ith row of W
is missing, we can then estimate it by linear re-
gression: W T

i· = (HHT )−1HXT
i· , or equivalently

Wi· = Xi·H
T (HHT )−1.

With this in mind, I propose the following EM
algorithm for estimating H that takes into ac-
count the additional known rows of X:

(0) Initialize H(0) = (W̃T W̃ )−1W̃T X̃, the estimate us-
ing only known rows of W .

(`) Repeat until convergence:

(a) Estimate the missing rows i of W , W
(`)
i· =

Xi·(H
(`−1))T (H(`−1)(H(`−1))T )−1. Form
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W (`).

(b) Estimate H(`) by H(`) =
((W (`))TW (`))−1(W (`))TX.

This should converge to values of H and W that
are more consistent with the overall X matrix.

2.3 When < K rows of W are known

It is also interesting to consider the same setup,
but now with Ĩ < k. In this case, the problem
of finding H is unidentifiable. Thus the EM al-
gorithm above will fail. The data simply do not
contain enough information to estimate H with-
out further restrictions on its form.

For completely unknown W , Rob Tibshi-
rani suggested using Archetypal Analysis [1] to
attempt to find both W and H. Archety-
pal Analysis imposes the additional assump-
tion/restriction that H = BX, where B is again
a stochastic matrix. This constrains the problem
enough that it is possible to solve.

Geometrically, the additional criterion that
H = BX is similar to our original statement
X = WH. X = WH says that the rows of X
are in the convex hull of the rows of H. The
constraint H = BX attempts to put the rows of
H in the convex hull of X. These cannot both
be satisfied unless the convex hulls are identical.
However, we are fitting this model assuming er-
rors, so the combined criteria will choose H so
the convex hulls of the rows ofH andX are close.
This should cause the rows of H to represent ex-
treme points of X, without deviating too far in
the convex hulls they represent.

Whether this constraint is appropriate is un-
clear, but it seems somewhat reasonable. It
makes more sense if a reduced weight is put on
the H = BX constraint, allowing greater devia-
tions of the H rows from the convex hull of X.
This would let the convex hull of H go outside
the convex hull of X, which is a bit more what we
would expect. Professor Tibshirani found that
this seemed to give more stable results on the
true data.

There is one major problem with decompos-
ing X = WH with W unknown: the solution

is invariant to permutations of the K rows of H
and columns of W . Practically, it is impossible
to figure out which of the rows of H correspond
to each of the cell types of interest. Thus, to
say anything meaningful, it seems that we need
at least some measurements of W to make these
archetypal points unambiguous.

I propose a combination of the archetypal
analysis approach with the known information
on W . Thus seek W,H,B to minimize the crite-
rion

L(H,W,B) = ||X −WH||22 + γ||H −BX||22,

with the additional constraint that W is consis-
tent with W̃ for the known rows (could be cap-
tured by additional γ2||W̃ −WĨ ||

2
2 penalty if we

allow error in W̃ ). We expect that we should
choose γ < 1. This problem is biconvex and so
should be solvable by iterative convex optimiza-
tion.

I will not include the results for Ĩ < k in this
paper for two reasons. One is the lack of space
in this writeup. The other is that the problem is
less interesting. In typical problems, k is quite
small (k = 5 in the Shen-Orr paper). Since it is
necessary to measure some of the rows of W to
disambiguate the cell types, there is little reason
not to measure at least k of them, making this
method less interesting

3 Results

I tested the first algorithm on two different data
sets. The first was simulated data, to see how
the algorithm performed in an ideal setting. The
second was the same kidney data used in the
Shen-Orr paper[2].

3.1 Simulation Results

For the simulated data, I used a small, simple
setup, so the results could be visualized. The
simulated data were generated as follows. We
have I = 20 samples, J = 50 genes, and K = 3
cell types. The true W matrix of weights is
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generated uniformly by stickbreaking for each
row, and the true archetypes H are generated
U [0, 10] for each entry in H. Then the actual
observed data X are computed as WH+ε where
ε ∼ N(0, 1).

For different values of Ĩ, 3 ≤ Ĩ ≤ 20, we use
the full X matrix and Ĩ rows of the W matrix
to estimate H by the above algorithm. We can
look at this in several ways. First, to get an idea
how well our solution for H approximates the
true H, we can compute the average Frobenius
norm between the true and the approximate H,
over the range of possible Ĩ. We obtain the plot
shown in Figure 2. For very low values of Ĩ, we

Figure 2: Distance of approximate H from true
H versus number of rows of W measured.

see that H is not recovered well. However, once
Ĩ is about 6 or so, the matrix H is recovered
nearly as well as in the case where W is fully
measured (Ĩ = 20, the last point on the graph).

We can try to get a graphical sense of how well
this worked, since the simulation used a small
enough number of genes that we can visualize
them explicitly. In Figure 3, we see a visual rep-
resentation of gene expression by cell type. The
left plot is the true (unknown) H, and the right
plot is the estimated H recovered with Ĩ = 12.
We see that recovery is not perfect, but there is
a very strong correspondance between expression

Figure 3: Expression by cell type (H) for the
true H and the H recovered with Ĩ = 12, corre-
sponding to measurement of half of the rows of
W . (Using simulated data.)

levels in the two matrices. This suggests that it
may indeed be possible to recover H from only
partial measurements on W .

3.2 Kidney Data Results

We next try this method on the true blood sam-
ple data used in the Shen-Orr paper. We will
look only at one of the study groups, In this data
set, we have a sample size of I = 15, K = 5 cell
types, and J = 54675 genes. We clearly can-
not represent this number of genes graphically,
but we can look at the average Frobenius norm
for varied numbers of rows of W , as in Figure
2. This plot is shown in Figure 4. Since this is
real instead of simulated data, we do not have a
ground truth for H. Instead, we use the H esti-
mated with all of W as the ground truth (corre-
sponding to H the way it was estimated in the
Shen-Orr paper), and see how well we approxi-
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Figure 4: Distance of approximate H from the
H estimated with all the rows, versus number of
rows of W measured.

mate this H when measuring fewer rows of W .

Looking at the plot, the results are not quite as
dramatic as in the simulated case. Nevertheless,
we see that when we measure at least half of
the rows of W or so, we do a reasonable job of
reconstructing H.

4 Conclusion

We have proposed a method for estimating the
gene expression in each cell type (H), requiring
measurement of the cell type distribution (W )
for only a subset of the samples. In both sim-
ulation and real data, we see that this does a
reasonable job of approximating H while requir-
ing measurement of significantly fewer rows of
W . This is encouraging, opening the possibility
for cheaper and faster deconvolution of data of
this sort.

This could be continued in several directions.
It would be interesting to try using these meth-
ods to compare population expression, as in the
Shen-Orr paper, to try to identify cell types that
are responsible for differences in biological and
medical behavior. This could be a better metric
than L2 distance for seeing whether the method

is actually viable. There is also room for work
in the low Ĩ area, as suggested by the proposed
biconvex estimation problem above.
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