
Dimensionality Redution of Motor-related Neural AtivityJoline Fan, Jonathan Kao, Paul Nuyujukian1 IntrodutionBrain-omputer interfaes (BCI) translate neural a-tivity from a subjet's ortex into useful ontrol sig-nals. In an online, losed-loop framework, the subjetan therefore ontrol a omputer ursor by instrut-ing movements, sine this instrution modulates neuralspiking in the brain. In this projet, we ahieve twogoals. First, we implement a new real-time neural net-work deoder that learns the relationship between ur-sor kinematis and spiking. Seond, we analyze neuralativity under BCI ontrol using dimensionality redu-tion tehniques and analytial modi�ations.Advanes in deoder design have pushed prostheti-ursor performane towards that of native arm move-ment. Most reently, these systems have been based onthe Kalman �lter [1℄. Beause neural spiking is non-linear with respet to kinematis, we investigate thefeasibility of a non-linear network � a reurrent andrandomly onneted neural network � for real-time de-oding [2℄.Understanding the dynamis of the neural ativityunder brain-ontrol is also important for informing bet-ter deoder designs. Typially, the analysis of neu-ral ativity involves the averaging of �ring rates arossmany trials in order to redue spiking variability andunveil the true �ring rate of a neuron. However, thisoperation may remove important temporal informationsuh as meaningful �ring rate hanges during a trial. Tothis end, dimensionality redution tehniques an beused to �nd struture in the neural data while main-taining temporal information [3℄. We therefore exam-ine neural data using unsupervised learning algorithmsinluding priniple omponents analysis (PCA), fa-tor analysis (FA), and Gaussian proess fator analysis(GPFA).2 Methods2.1 Task setupExperiments were onduted using rhesus maaquesfollowing a Stanford IACUC approved protool. Themonkeys perform a enter-out task, where 8 targetsare positioned uniformly around a irle with a radiusof 8 m. One of the 8 targets around the irle is se-leted randomly and lit on the sreen. The monkey

Figure 1: A monkey makes reahes while neural ativityis reorded from motor ortex. In BCI mode (shownabove) the monkey's neural ativity is then passed to adeode algorithm to update the ursor position on thesreen.then reahes to the target and holds the ursor for 500ms within a 2.5 m window. During training, the mon-key's hand position determines the kinematis of anonsreen ursor. Signals in motor ortex are simultane-ously measured from an eletrode array while the mon-key makes reahes to the instruted targets. These twosoures of data are passed to a supervised learning algo-rithm to �t a Kalman �lter (least squares) and/or neu-ral network deoder (FORCE learning/reursive leastsquares). These deoders use the monkey's neural stateto predit the on-sreen ursor position. After �ttinga model, the monkey engages in the same reah task;this time, however, the ursor position is ontrolled byspiking ativity in motor ortex instead of hand posi-tion.2.2 DeodersIn this setion, we present bakground on the tradi-tional Kalman �lter used in the BCI literature andpresent a deoder novel to this work � the reurrentneural network (in ollaboration with David Sussillo).2.2.1 Kalman FilterThe Kalman �lter is a reursive and e�ient solution toestimate states of linear dynamial systems with noiseand is the minimum mean square error estimator whenthe noise is Gaussian. The anonial disretized linear1



Figure 2: A reurrent neural network with randomizedinitial onnetions. Their outputs are fed to a vetor ofweights w whih are linearly summed to produe theoutput z.dynamial system is
xt+1 = Axt + vt (1)

yt = Cxt + wt (2)where xt � the state � are the ursor kinematis, speif-ially position and veloity, and yt � the output � isthe neural spiking data. The noise terms are Gaussiannoise vt ∼ N (0, Σv) and wt ∼ N (0, Σw). A, C, andthe noise ovarianes an all be �t via least squaresusing observations of the data.To perform state estimation, we employ Riatti re-ursion to estimate the ovariane of the state predi-tion error, Σ̂t|t−1 and update the predited state x̂t.The state predition ovariane reursion and state es-timation are
Σ̂t+1|t = AΣ̂t|t−1A

T − LtCΣ̂tA
T + Σv (3)

x̂t+1 = Ax̂t + Lt (yt − ŷt) (4)where Lt = AΣ̂t|t−1C
T
(

CΣ̂t|t−1C
T + Σw

)−1 is oftentermed the observer gain and ŷt = Cx̂t is the preditedoutput. Thus our estimated state x̂t+1 an be viewedas the superposition of a state update Ax̂t and a linearfuntion of the output predition error.2.2.2 Reurrent Neural NetworkThe reurrent neural network shown in Figure 2 isinitialized to have random synapti onnetions andstrengths. In Figure 2, ri is a measure of neuron i's�ring rate (xi) after the hyperboli tangent nonlinear-ity, i.e. ri = tanh (xi), JCG is a matrix denoting thesynapti strengths, w are the output weights, and z isthe output. The dynamis are governed by equation 5,where g is a salar gain.
τẋi = −xi + g

∑

k

JCG
ik rk (5)Due to the reurrent nature of the network, it is notimmediately intuitive how bakpropagation would be

used to provide error signals to eah neuron, whih areused to optimize its weights via gradient desent. As-suming the network output is desired to be f (t), wede�ne the output error signal e (t) = z (t) − f (t). Thenovelty of FORCE learning [2℄ is to use the output er-ror signal as the neuron error signal for every neuron.In this framework, the network feeds bak the over-all output error and an use reursive least squares totrain the weights w. Learning the weights w e�etivelytrains the entire network beause it an be shown thatthe network synapti strengths J in equation (5) anbe re-written as
Jeff = gJCG + wyw

T (6)where wy are neuron y's weights. Beause the additionof a one rank matrix to a rank n matrix an hangeall n eigenvalues, the overall network is trained. Thedetails of the supervised reursive least squares trainingare in [2℄ and are omitted from this paper for brevity.2.3 Dimensionality RedutionOn a per-trial basis, it is useful to visualize how theneuron �ring rates evolve over time. However, to ap-ture the ensemble ativity, this would require visual-izing a 96 dimensional spae, whih is not tratable.Moreover, it has been reported that most of the vari-ane of motor neural data for reahing tasks like oursan be aptured in approximately 10 dimensions [4℄.Thus, dimensionality redution algorithms an be usedto projet neural data onto 3 dimensions and visualizetrajetories trial-by-trial in a 3D spae.2.3.1 Prinipal omponents analysisPCA analysis is performed as formulated in CS 229letures [5℄. The data, X , have rows orrespond-ing to the hannel number and olumns orrespond-ing to smoothed �ring rates over time in 20 ms bins.The �ring rates are binned by ounting the numberof spikes ourring in non-overlapping 20 ms intervalsand are square rooted to stabilize the �ring rate vari-ane. Smoothing is ahieved by onvolving the binned�ring rates with a Gaussian kernel of standard devia-tion 30 ms. Thus, dimensionality redution using PCArequires two stages: (1) binning and smoothing of �ringrates and (2) dimensionality redution.2.3.2 Fator analysisFA analysis requires both binning and smoothing of �r-ing rates. As formulated in CS 229 letures [5℄, xi,t isthe �ring rate of hannel i at time t, zjt is the latentstate dimension j at time t, and the overall z representsthe redued dimensionality of the data. The data is for-matted in matrix form, i.e. x =
[

xT
:,1 . . . xT

:,T

] where T2



is the length of a trial, and z =
[

zT
:,1 . . . zT

:,T

]. The out-put, x = µ + Λz is the key to visualization. In e�et, zan be viewed as oe�ients whih determine the on-tribution of a olumn of Λ to x. However, the olumnsof Λ are not orthonormal. Thus, we perform a singularvalue deomposition (SVD) on Λ = UΣV T and trans-form oordinates into z̃ = ΣV T z so that Λz = Uz̃. U isan orthogonal matrix omprising the left singular ve-tors of Λ and z̃ is the rotated (by V T ) and saled (by
Σ) version of z. To visualize trajetories, we alulate
E [z|x] = ΛT

(

ΛΛT + Ψ
)−1

(x − µ) as derived in CS229 letures using jointly Gaussian random variables[5℄. Then, E [z̃|x] = ΣV T E [z|x] is the orthonormalizedtrajetory whih an be projeted onto the bases, U .2.3.3 Gaussian proess fator analysisGaussian proess fator analysis (GPFA) is similar tofator analysis, but assumes that the latent states arerelated through time via a Gaussian proess (GP).Thus, if zi,j is the latent state for dimension i at time
j then, zi,: ∼ N (0, Ki) where ovariane matrix Ki iselement-wise

Ki (t1, t2) = σ2
f,i exp

(

−
(t1 − t2)

2

2τ2
i

)

+ σ2
n,iδt1,t2 (7)where δij is the Kroneker delta, and σ2
f,i and σ2

n,iare onstant pre-determined varianes. The parame-ters µ, Λ, Ψ an be estimated using maximum likelihoodand expetation maximization as derived in [4℄ and the
τi an be optimized via gradient desent. The e�et ofrelating the latent states through a Gaussian proessis to e�etively smooth the data. Thus, GPFA is nota two-stage algorithm, but rather an algorithm whihsimultaneously smooths the data and performs dimen-sionality redution.2.3.4 Algorithmi ChoiesOne shortoming of PCA is the lak of a noise model.Neurons an be well-haraterized as a Poisson proess,indiating that a neuron's �ring rate variane is approx-imately equal to its �ring rate mean. Sine PCA seeksdimensions whih maximize variane, it favors hannelswith higher �ring rates and inorretly skews the bases.Upon implementing PCA, we observed separated tra-jetories aross di�erent reah diretions; however, thetrajetories were inherently more noisy on a trial-by-trial basis as ompared to the latter two algorithms.These trajetories are not shown for brevity.FA provides a major advantage over PCA in that itallows individual neurons to have their own varianeand an therefore model neuron noise. Thus, unlikePCA, it will not inorretly weight neurons that havehigh �ring rates but are not neessarily informative.Rather, FA seeks diretions that maximize ovariane
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Figure 3: The neural trajetories (GPFA) for 96 dimen-sional data (96 hannels of neural data) redued to 3 di-mensions under brain ontrol with a modi�ed Kalman�lter deoder. The trajetories are olored based ontarget loation and the bold trajetories are mean trialtrajetories. It is lear that reahes in di�erent dire-tions follow separate trajetories in spae.between neurons. We therefore observed that neuraltrajetories using FA had lower aross trial variane asompared to that of PCA.In both PCA and FA, smoothing and the dimension-ality redution are performed separately and annotinform eah other. A major advantage of GPFA isthat smoothing and dimensionality redution are donesimultaneously and an thereby be jointly optimized,allowing for optimal smoothing. Moreover, GPFA hasbeen shown to be superior to FA and PCA in preditinga leave-one-out-CV neuron �ring rate [4℄. In the neuraltrajetories onstruted using GPFA, we notied thatthe path urvature was smoother and had less aross-trial variane as ompared to the two-step algorithms.We therefore utilize GPFA in the following analyses.3 Results3.1 Behavioral-dependent visual spaetrajetoriesFigure 3 shows the neural trajetories on a trial-by-trial basis aross 8 di�erent reah diretions, denotedby separate olors. There is lear separation of thetrajetories, and they oupy di�erent regions of the
3 dimensional spae. Furthermore, the order of thetrajetories mirror the relative position of the targets3



aquired for atual hand reahes � red maps to a down-ward left reah, orange to a downward reah, yellow toa downward right reah, and so on.3.2 Channel ountSignals reeived on eah of the 96 hannels ontainvarying amounts of information. For example, a han-nel may be far away from any neurons and thereforereeive small signal, or it may be measuring ation po-tentials of a neuron that is not informative of reahdiretion. Therefore, it is useful to have a way to rankhannels in order of importane, and observe how neu-ral trajetories di�er by using only a subset of hannels.Below, we investigate a ranking method to selet a sub-set of hannels that are most informative.3.2.1 Variane normalized maximum depthThe ranking metri we develop, variane normalizedmaximum depth (MDV), was inspired by previous workin neurosiene. The MDV of a single hannel is de�nedas
MDV =

maxy∈Y x̄ (y) − miny∈Y x̄ (y)

σ2
x

(8)where x̄ (y) is the average �ring rate of the hannelwhen a reah in diretion y is made and σ2
x is the �ringrate variane for that hannel. The metri is a measureof normalized �tuning depth,� or roughly, the maximumdi�erene in a hannel's �ring rate aross reah dire-tions.It is worth noting that it is possible to alu-late the mutual information between hannel i and areah diretion y by empirially determining the �r-ing rate probability mass funtion (pmf) of that han-nel, pXi

(xi). We also determine the same �ring ratepmf onditioned on a reah diretion Y = y, giving
pXi|Y (xi|y). With these pmfs, we an alulate themutual information between neuron i and reah dire-tion via I (Xi; Y ) = H (Xi) − H (Xi|Y ). A ranking ofhannels using mutual information yields similar resultsto MDV.3.2.2 Visualization with di�erent hannelountsWhen the number of hannels used for dimensionalityredution is dereased from 96 hannels (Figure 3) to 24hannels (Figure 4) there is an obvious ompression oftrajetory volume. We believe that by inluding fewernoisy hannels, the lower dimensional spae is expandedin a non-informative way. This is beause even aftera lower dimensional basis is found, noisy hannels areprojeted into this lower dimensional spae and thusorrupt the trial-by-trial trajetories.
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Figure 4: The neural trajetories (GPFA) for 24 di-mensional data (24 hannels of neural data) reduedto 3 dimensions under brain ontrol with a modi�edKalman �lter. These traes oupy a smaller volumethan the trajetories of Figure 3.3.3 Deoder variationIn Figure 3, 4, and 5, the neural trajetories are builto� a set of bases representing all reah diretions forthe same mode of ontrol even though only two reahdiretions are visualized. In eah mode of ontrol, thereis lear separation of the upward (blue) and downward-reahing (orange) trajetories. By analyzing di�erenesin the urvature and the aross-trial-variane of the tra-jetories, we an make hypotheses about neural ontrolstrategy when operating under di�erent modes of BCI.For instane, the inrease in aross-trial-variane be-tween di�erent models may re�et robustness or sen-sitivity of a deoding algorithm. It may also indiatewhether a reah is mostly ballisti or subjet to on-line orretions. Alternatively, it ould simply indiateinreased variation in the dynamis of ontrol. Thesehypotheses will neessitate further sienti� inquiry tobetter understand. Beause these three dimensions rep-resent only a fration of the variability in the dataset,projetions to a higher dimensional spae would be re-quired to fully quantify metris.4 ConlusionsIn this projet, we explored neural relationships be-tween various ontrol modalities and deoders utilizingseveral dimensionality redution tehniques. We ar-ried out behavioral experiments in monkeys to gatherdata to test these hypotheses, using both hand kine-matis and real-time brain ontrol tasks. Two BCI de-oders were examined: a feedbak-modi�ed Kalman �l-4
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Figure 5: (left) The GPFA trajetories for downward (orange) and upward (blue) hand reahes, using only 24hannels. (right) The GPFA trajetories for downward (orange) and upward (blue) neural network deodes,using only 24 hannels.ter and a novel FORCE neural network deoder. Wedemonstrated the feasibility of the neural network de-oder for online real time BCI. The di�erenes be-tween these deoders in ontrast to native limb on-trol were explored with PCA, FA, and GPFA. We ul-timately settled on GPFA as the �nal tool for analy-sis beause of its ability to maximize separation in theneural state representation. Additionally, the impat ofnon-informative eletrode exlusion on the smoothnessof the low-dimensional representation was examined.Further detailed analysis is neessary to haraterizespei� hanges to deoders to improve performane.However, one lear �nding from this work that wouldimprove deoder robustness would be to preemptivelysreen and remove eletrodes that are not as informa-tive and may be mis-modeled by the deoder. Takentogether, these �ndings an help inform subsequent de-oder design and potentially improve linial BCI util-ity in translation.5 AknowledgmentsWe thank D. Sussillo for ollaborating on the neuralnetwork deoder. We are grateful to M. Rish and J.Aguayo for veterinary are, and S. Eisensee for adminis-trative support. We thank K. Shenoy for his guidane,support, and resoures.6 Referenes1. Gilja V*, Nuyujukian P*, Chestek CA, Cunning-ham JP, Yu BM, Ryu SI, Shenoy KV (2010,poster) High-performane ontinuous neural ur-
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