
Dimensionality Redu
tion of Motor-related Neural A
tivityJoline Fan, Jonathan Kao, Paul Nuyujukian1 Introdu
tionBrain-
omputer interfa
es (BCI) translate neural a
-tivity from a subje
t's 
ortex into useful 
ontrol sig-nals. In an online, 
losed-loop framework, the subje
t
an therefore 
ontrol a 
omputer 
ursor by instru
t-ing movements, sin
e this instru
tion modulates neuralspiking in the brain. In this proje
t, we a
hieve twogoals. First, we implement a new real-time neural net-work de
oder that learns the relationship between 
ur-sor kinemati
s and spiking. Se
ond, we analyze neurala
tivity under BCI 
ontrol using dimensionality redu
-tion te
hniques and analyti
al modi�
ations.Advan
es in de
oder design have pushed prostheti
-
ursor performan
e towards that of native arm move-ment. Most re
ently, these systems have been based onthe Kalman �lter [1℄. Be
ause neural spiking is non-linear with respe
t to kinemati
s, we investigate thefeasibility of a non-linear network � a re
urrent andrandomly 
onne
ted neural network � for real-time de-
oding [2℄.Understanding the dynami
s of the neural a
tivityunder brain-
ontrol is also important for informing bet-ter de
oder designs. Typi
ally, the analysis of neu-ral a
tivity involves the averaging of �ring rates a
rossmany trials in order to redu
e spiking variability andunveil the true �ring rate of a neuron. However, thisoperation may remove important temporal informationsu
h as meaningful �ring rate 
hanges during a trial. Tothis end, dimensionality redu
tion te
hniques 
an beused to �nd stru
ture in the neural data while main-taining temporal information [3℄. We therefore exam-ine neural data using unsupervised learning algorithmsin
luding prin
iple 
omponents analysis (PCA), fa
-tor analysis (FA), and Gaussian pro
ess fa
tor analysis(GPFA).2 Methods2.1 Task setupExperiments were 
ondu
ted using rhesus ma
aquesfollowing a Stanford IACUC approved proto
ol. Themonkeys perform a 
enter-out task, where 8 targetsare positioned uniformly around a 
ir
le with a radiusof 8 
m. One of the 8 targets around the 
ir
le is se-le
ted randomly and lit on the s
reen. The monkey

Figure 1: A monkey makes rea
hes while neural a
tivityis re
orded from motor 
ortex. In BCI mode (shownabove) the monkey's neural a
tivity is then passed to ade
ode algorithm to update the 
ursor position on thes
reen.then rea
hes to the target and holds the 
ursor for 500ms within a 2.5 
m window. During training, the mon-key's hand position determines the kinemati
s of anons
reen 
ursor. Signals in motor 
ortex are simultane-ously measured from an ele
trode array while the mon-key makes rea
hes to the instru
ted targets. These twosour
es of data are passed to a supervised learning algo-rithm to �t a Kalman �lter (least squares) and/or neu-ral network de
oder (FORCE learning/re
ursive leastsquares). These de
oders use the monkey's neural stateto predi
t the on-s
reen 
ursor position. After �ttinga model, the monkey engages in the same rea
h task;this time, however, the 
ursor position is 
ontrolled byspiking a
tivity in motor 
ortex instead of hand posi-tion.2.2 De
odersIn this se
tion, we present ba
kground on the tradi-tional Kalman �lter used in the BCI literature andpresent a de
oder novel to this work � the re
urrentneural network (in 
ollaboration with David Sussillo).2.2.1 Kalman FilterThe Kalman �lter is a re
ursive and e�
ient solution toestimate states of linear dynami
al systems with noiseand is the minimum mean square error estimator whenthe noise is Gaussian. The 
anoni
al dis
retized linear1



Figure 2: A re
urrent neural network with randomizedinitial 
onne
tions. Their outputs are fed to a ve
tor ofweights w whi
h are linearly summed to produ
e theoutput z.dynami
al system is
xt+1 = Axt + vt (1)

yt = Cxt + wt (2)where xt � the state � are the 
ursor kinemati
s, spe
if-i
ally position and velo
ity, and yt � the output � isthe neural spiking data. The noise terms are Gaussiannoise vt ∼ N (0, Σv) and wt ∼ N (0, Σw). A, C, andthe noise 
ovarian
es 
an all be �t via least squaresusing observations of the data.To perform state estimation, we employ Ri
atti re-
ursion to estimate the 
ovarian
e of the state predi
-tion error, Σ̂t|t−1 and update the predi
ted state x̂t.The state predi
tion 
ovarian
e re
ursion and state es-timation are
Σ̂t+1|t = AΣ̂t|t−1A

T − LtCΣ̂tA
T + Σv (3)

x̂t+1 = Ax̂t + Lt (yt − ŷt) (4)where Lt = AΣ̂t|t−1C
T
(

CΣ̂t|t−1C
T + Σw

)−1 is oftentermed the observer gain and ŷt = Cx̂t is the predi
tedoutput. Thus our estimated state x̂t+1 
an be viewedas the superposition of a state update Ax̂t and a linearfun
tion of the output predi
tion error.2.2.2 Re
urrent Neural NetworkThe re
urrent neural network shown in Figure 2 isinitialized to have random synapti
 
onne
tions andstrengths. In Figure 2, ri is a measure of neuron i's�ring rate (xi) after the hyperboli
 tangent nonlinear-ity, i.e. ri = tanh (xi), JCG is a matrix denoting thesynapti
 strengths, w are the output weights, and z isthe output. The dynami
s are governed by equation 5,where g is a s
alar gain.
τẋi = −xi + g

∑

k

JCG
ik rk (5)Due to the re
urrent nature of the network, it is notimmediately intuitive how ba
kpropagation would be

used to provide error signals to ea
h neuron, whi
h areused to optimize its weights via gradient des
ent. As-suming the network output is desired to be f (t), wede�ne the output error signal e (t) = z (t) − f (t). Thenovelty of FORCE learning [2℄ is to use the output er-ror signal as the neuron error signal for every neuron.In this framework, the network feeds ba
k the over-all output error and 
an use re
ursive least squares totrain the weights w. Learning the weights w e�e
tivelytrains the entire network be
ause it 
an be shown thatthe network synapti
 strengths J in equation (5) 
anbe re-written as
Jeff = gJCG + wyw

T (6)where wy are neuron y's weights. Be
ause the additionof a one rank matrix to a rank n matrix 
an 
hangeall n eigenvalues, the overall network is trained. Thedetails of the supervised re
ursive least squares trainingare in [2℄ and are omitted from this paper for brevity.2.3 Dimensionality Redu
tionOn a per-trial basis, it is useful to visualize how theneuron �ring rates evolve over time. However, to 
ap-ture the ensemble a
tivity, this would require visual-izing a 96 dimensional spa
e, whi
h is not tra
table.Moreover, it has been reported that most of the vari-an
e of motor neural data for rea
hing tasks like ours
an be 
aptured in approximately 10 dimensions [4℄.Thus, dimensionality redu
tion algorithms 
an be usedto proje
t neural data onto 3 dimensions and visualizetraje
tories trial-by-trial in a 3D spa
e.2.3.1 Prin
ipal 
omponents analysisPCA analysis is performed as formulated in CS 229le
tures [5℄. The data, X , have rows 
orrespond-ing to the 
hannel number and 
olumns 
orrespond-ing to smoothed �ring rates over time in 20 ms bins.The �ring rates are binned by 
ounting the numberof spikes o

urring in non-overlapping 20 ms intervalsand are square rooted to stabilize the �ring rate vari-an
e. Smoothing is a
hieved by 
onvolving the binned�ring rates with a Gaussian kernel of standard devia-tion 30 ms. Thus, dimensionality redu
tion using PCArequires two stages: (1) binning and smoothing of �ringrates and (2) dimensionality redu
tion.2.3.2 Fa
tor analysisFA analysis requires both binning and smoothing of �r-ing rates. As formulated in CS 229 le
tures [5℄, xi,t isthe �ring rate of 
hannel i at time t, zjt is the latentstate dimension j at time t, and the overall z representsthe redu
ed dimensionality of the data. The data is for-matted in matrix form, i.e. x =
[

xT
:,1 . . . xT

:,T

] where T2



is the length of a trial, and z =
[

zT
:,1 . . . zT

:,T

]. The out-put, x = µ + Λz is the key to visualization. In e�e
t, z
an be viewed as 
oe�
ients whi
h determine the 
on-tribution of a 
olumn of Λ to x. However, the 
olumnsof Λ are not orthonormal. Thus, we perform a singularvalue de
omposition (SVD) on Λ = UΣV T and trans-form 
oordinates into z̃ = ΣV T z so that Λz = Uz̃. U isan orthogonal matrix 
omprising the left singular ve
-tors of Λ and z̃ is the rotated (by V T ) and s
aled (by
Σ) version of z. To visualize traje
tories, we 
al
ulate
E [z|x] = ΛT

(

ΛΛT + Ψ
)−1

(x − µ) as derived in CS229 le
tures using jointly Gaussian random variables[5℄. Then, E [z̃|x] = ΣV T E [z|x] is the orthonormalizedtraje
tory whi
h 
an be proje
ted onto the bases, U .2.3.3 Gaussian pro
ess fa
tor analysisGaussian pro
ess fa
tor analysis (GPFA) is similar tofa
tor analysis, but assumes that the latent states arerelated through time via a Gaussian pro
ess (GP).Thus, if zi,j is the latent state for dimension i at time
j then, zi,: ∼ N (0, Ki) where 
ovarian
e matrix Ki iselement-wise

Ki (t1, t2) = σ2
f,i exp

(

−
(t1 − t2)

2

2τ2
i

)

+ σ2
n,iδt1,t2 (7)where δij is the Krone
ker delta, and σ2
f,i and σ2

n,iare 
onstant pre-determined varian
es. The parame-ters µ, Λ, Ψ 
an be estimated using maximum likelihoodand expe
tation maximization as derived in [4℄ and the
τi 
an be optimized via gradient des
ent. The e�e
t ofrelating the latent states through a Gaussian pro
essis to e�e
tively smooth the data. Thus, GPFA is nota two-stage algorithm, but rather an algorithm whi
hsimultaneously smooths the data and performs dimen-sionality redu
tion.2.3.4 Algorithmi
 Choi
esOne short
oming of PCA is the la
k of a noise model.Neurons 
an be well-
hara
terized as a Poisson pro
ess,indi
ating that a neuron's �ring rate varian
e is approx-imately equal to its �ring rate mean. Sin
e PCA seeksdimensions whi
h maximize varian
e, it favors 
hannelswith higher �ring rates and in
orre
tly skews the bases.Upon implementing PCA, we observed separated tra-je
tories a
ross di�erent rea
h dire
tions; however, thetraje
tories were inherently more noisy on a trial-by-trial basis as 
ompared to the latter two algorithms.These traje
tories are not shown for brevity.FA provides a major advantage over PCA in that itallows individual neurons to have their own varian
eand 
an therefore model neuron noise. Thus, unlikePCA, it will not in
orre
tly weight neurons that havehigh �ring rates but are not ne
essarily informative.Rather, FA seeks dire
tions that maximize 
ovarian
e
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Figure 3: The neural traje
tories (GPFA) for 96 dimen-sional data (96 
hannels of neural data) redu
ed to 3 di-mensions under brain 
ontrol with a modi�ed Kalman�lter de
oder. The traje
tories are 
olored based ontarget lo
ation and the bold traje
tories are mean trialtraje
tories. It is 
lear that rea
hes in di�erent dire
-tions follow separate traje
tories in spa
e.between neurons. We therefore observed that neuraltraje
tories using FA had lower a
ross trial varian
e as
ompared to that of PCA.In both PCA and FA, smoothing and the dimension-ality redu
tion are performed separately and 
annotinform ea
h other. A major advantage of GPFA isthat smoothing and dimensionality redu
tion are donesimultaneously and 
an thereby be jointly optimized,allowing for optimal smoothing. Moreover, GPFA hasbeen shown to be superior to FA and PCA in predi
tinga leave-one-out-CV neuron �ring rate [4℄. In the neuraltraje
tories 
onstru
ted using GPFA, we noti
ed thatthe path 
urvature was smoother and had less a
ross-trial varian
e as 
ompared to the two-step algorithms.We therefore utilize GPFA in the following analyses.3 Results3.1 Behavioral-dependent visual spa
etraje
toriesFigure 3 shows the neural traje
tories on a trial-by-trial basis a
ross 8 di�erent rea
h dire
tions, denotedby separate 
olors. There is 
lear separation of thetraje
tories, and they o

upy di�erent regions of the
3 dimensional spa
e. Furthermore, the order of thetraje
tories mirror the relative position of the targets3



a
quired for a
tual hand rea
hes � red maps to a down-ward left rea
h, orange to a downward rea
h, yellow toa downward right rea
h, and so on.3.2 Channel 
ountSignals re
eived on ea
h of the 96 
hannels 
ontainvarying amounts of information. For example, a 
han-nel may be far away from any neurons and thereforere
eive small signal, or it may be measuring a
tion po-tentials of a neuron that is not informative of rea
hdire
tion. Therefore, it is useful to have a way to rank
hannels in order of importan
e, and observe how neu-ral traje
tories di�er by using only a subset of 
hannels.Below, we investigate a ranking method to sele
t a sub-set of 
hannels that are most informative.3.2.1 Varian
e normalized maximum depthThe ranking metri
 we develop, varian
e normalizedmaximum depth (MDV), was inspired by previous workin neuros
ien
e. The MDV of a single 
hannel is de�nedas
MDV =

maxy∈Y x̄ (y) − miny∈Y x̄ (y)

σ2
x

(8)where x̄ (y) is the average �ring rate of the 
hannelwhen a rea
h in dire
tion y is made and σ2
x is the �ringrate varian
e for that 
hannel. The metri
 is a measureof normalized �tuning depth,� or roughly, the maximumdi�eren
e in a 
hannel's �ring rate a
ross rea
h dire
-tions.It is worth noting that it is possible to 
al
u-late the mutual information between 
hannel i and area
h dire
tion y by empiri
ally determining the �r-ing rate probability mass fun
tion (pmf) of that 
han-nel, pXi

(xi). We also determine the same �ring ratepmf 
onditioned on a rea
h dire
tion Y = y, giving
pXi|Y (xi|y). With these pmfs, we 
an 
al
ulate themutual information between neuron i and rea
h dire
-tion via I (Xi; Y ) = H (Xi) − H (Xi|Y ). A ranking of
hannels using mutual information yields similar resultsto MDV.3.2.2 Visualization with di�erent 
hannel
ountsWhen the number of 
hannels used for dimensionalityredu
tion is de
reased from 96 
hannels (Figure 3) to 24
hannels (Figure 4) there is an obvious 
ompression oftraje
tory volume. We believe that by in
luding fewernoisy 
hannels, the lower dimensional spa
e is expandedin a non-informative way. This is be
ause even aftera lower dimensional basis is found, noisy 
hannels areproje
ted into this lower dimensional spa
e and thus
orrupt the trial-by-trial traje
tories.
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Figure 4: The neural traje
tories (GPFA) for 24 di-mensional data (24 
hannels of neural data) redu
edto 3 dimensions under brain 
ontrol with a modi�edKalman �lter. These tra
es o

upy a smaller volumethan the traje
tories of Figure 3.3.3 De
oder variationIn Figure 3, 4, and 5, the neural traje
tories are builto� a set of bases representing all rea
h dire
tions forthe same mode of 
ontrol even though only two rea
hdire
tions are visualized. In ea
h mode of 
ontrol, thereis 
lear separation of the upward (blue) and downward-rea
hing (orange) traje
tories. By analyzing di�eren
esin the 
urvature and the a
ross-trial-varian
e of the tra-je
tories, we 
an make hypotheses about neural 
ontrolstrategy when operating under di�erent modes of BCI.For instan
e, the in
rease in a
ross-trial-varian
e be-tween di�erent models may re�e
t robustness or sen-sitivity of a de
oding algorithm. It may also indi
atewhether a rea
h is mostly ballisti
 or subje
t to on-line 
orre
tions. Alternatively, it 
ould simply indi
atein
reased variation in the dynami
s of 
ontrol. Thesehypotheses will ne
essitate further s
ienti�
 inquiry tobetter understand. Be
ause these three dimensions rep-resent only a fra
tion of the variability in the dataset,proje
tions to a higher dimensional spa
e would be re-quired to fully quantify metri
s.4 Con
lusionsIn this proje
t, we explored neural relationships be-tween various 
ontrol modalities and de
oders utilizingseveral dimensionality redu
tion te
hniques. We 
ar-ried out behavioral experiments in monkeys to gatherdata to test these hypotheses, using both hand kine-mati
s and real-time brain 
ontrol tasks. Two BCI de-
oders were examined: a feedba
k-modi�ed Kalman �l-4
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Figure 5: (left) The GPFA traje
tories for downward (orange) and upward (blue) hand rea
hes, using only 24
hannels. (right) The GPFA traje
tories for downward (orange) and upward (blue) neural network de
odes,using only 24 
hannels.ter and a novel FORCE neural network de
oder. Wedemonstrated the feasibility of the neural network de-
oder for online real time BCI. The di�eren
es be-tween these de
oders in 
ontrast to native limb 
on-trol were explored with PCA, FA, and GPFA. We ul-timately settled on GPFA as the �nal tool for analy-sis be
ause of its ability to maximize separation in theneural state representation. Additionally, the impa
t ofnon-informative ele
trode ex
lusion on the smoothnessof the low-dimensional representation was examined.Further detailed analysis is ne
essary to 
hara
terizespe
i�
 
hanges to de
oders to improve performan
e.However, one 
lear �nding from this work that wouldimprove de
oder robustness would be to preemptivelys
reen and remove ele
trodes that are not as informa-tive and may be mis-modeled by the de
oder. Takentogether, these �ndings 
an help inform subsequent de-
oder design and potentially improve 
lini
al BCI util-ity in translation.5 A
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