Dimensionality Reduction of Motor-related Neural Activity

Joline Fan, Jonathan Kao, Paul Nuyujukian

1 Introduction

Brain-computer interfaces (BCI) translate neural ac-
tivity from a subject’s cortex into useful control sig-
nals. In an online, closed-loop framework, the subject
can therefore control a computer cursor by instruct-
ing movements, since this instruction modulates neural
spiking in the brain. In this project, we achieve two
goals. First, we implement a new real-time neural net-
work decoder that learns the relationship between cur-
sor kinematics and spiking. Second, we analyze neural
activity under BCI control using dimensionality reduc-
tion techniques and analytical modifications.

Advances in decoder design have pushed prosthetic-
cursor performance towards that of native arm move-
ment. Most recently, these systems have been based on
the Kalman filter [1]. Because neural spiking is non-
linear with respect to kinematics, we investigate the
feasibility of a non-linear network — a recurrent and
randomly connected neural network — for real-time de-
coding [2].

Understanding the dynamics of the neural activity
under brain-control is also important for informing bet-
ter decoder designs. Typically, the analysis of neu-
ral activity involves the averaging of firing rates across
many trials in order to reduce spiking variability and
unveil the true firing rate of a neuron. However, this
operation may remove important temporal information
such as meaningful firing rate changes during a trial. To
this end, dimensionality reduction techniques can be
used to find structure in the neural data while main-
taining temporal information [3]. We therefore exam-
ine neural data using unsupervised learning algorithms
including principle components analysis (PCA), fac-

tor analysis (FA), and Gaussian process factor analysis
(GPFA).

2 Methods

2.1 Task setup

Experiments were conducted using rhesus macaques
following a Stanford TACUC approved protocol. The
monkeys perform a center-out task, where 8 targets
are positioned uniformly around a circle with a radius
of 8 cm. One of the 8 targets around the circle is se-
lected randomly and lit on the screen. The monkey

Decode Algorithm

o neural activity

Figure 1: A monkey makes reaches while neural activity
is recorded from motor cortex. In BCI mode (shown
above) the monkey’s neural activity is then passed to a
decode algorithm to update the cursor position on the
screen.

then reaches to the target and holds the cursor for 500
ms within a 2.5 cm window. During training, the mon-
key’s hand position determines the kinematics of an
onscreen cursor. Signals in motor cortex are simultane-
ously measured from an electrode array while the mon-
key makes reaches to the instructed targets. These two
sources of data are passed to a supervised learning algo-
rithm to fit a Kalman filter (least squares) and/or neu-
ral network decoder (FORCE learning/recursive least
squares). These decoders use the monkey’s neural state
to predict the on-screen cursor position. After fitting
a model, the monkey engages in the same reach task;
this time, however, the cursor position is controlled by
spiking activity in motor cortex instead of hand posi-
tion.

2.2 Decoders

In this section, we present background on the tradi-
tional Kalman filter used in the BCI literature and
present a decoder novel to this work — the recurrent
neural network (in collaboration with David Sussillo).

2.2.1 Kalman Filter

The Kalman filter is a recursive and efficient solution to
estimate states of linear dynamical systems with noise
and is the minimum mean square error estimator when
the noise is Gaussian. The canonical discretized linear

Figure 2: A recurrent neural network with randomized
initial connections. Their outputs are fed to a vector of
weights w which are linearly summed to produce the
output z.

dynamical system is

ASCt =+ vt (1)
C(Et + wy (2)

Tt+41
Yyt =

where x; — the state — are the cursor kinematics, specif-
ically position and velocity, and y; — the output — is
the neural spiking data. The noise terms are Gaussian
noise vy ~ N (0,3,) and w; ~ N (0,%,). A, C, and
the noise covariances can all be fit via least squares
using observations of the data.

To perform state estimation, we employ Ricatti re-
cursion to estimate the covariance of the state predic-
tion error, f]t“_l and update the predicted state Z;.
The state prediction covariance recursion and state es-
timation are

A AT - LS AT 1+ %,
Ay + Lt (ys — 9t)

(3)
(4)

. . -1
where Ly = A%y, 1CT (C8y0 1CT +3,) is often
termed the observer gain and ; = CZ; is the predicted
output. Thus our estimated state ;11 can be viewed
as the superposition of a state update AZ; and a linear
function of the output prediction error.

E15-1-1|t =

Ty =

2.2.2 Recurrent Neural Network

The recurrent neural network shown in Figure 2 is
initialized to have random synaptic connections and
strengths. In Figure 2, r; is a measure of neuron i’s
firing rate (x;) after the hyperbolic tangent nonlinear-
ity, i.e. r; = tanh (z;), J°¢ is a matrix denoting the
synaptic strengths, w are the output weights, and z is
the output. The dynamics are governed by equation 5,
where g is a scalar gain.

TE; = —x;+ g Z JiCkGrk (5)
k

Due to the recurrent nature of the network, it is not
immediately intuitive how backpropagation would be

used to provide error signals to each neuron, which are
used to optimize its weights via gradient descent. As-
suming the network output is desired to be f(t), we
define the output error signal e (t) = z (t) — f (¢). The
novelty of FORCE learning [2] is to use the output er-
ror signal as the neuron error signal for every neuron.
In this framework, the network feeds back the over-
all output error and can use recursive least squares to
train the weights w. Learning the weights w effectively
trains the entire network because it can be shown that
the network synaptic strengths J in equation (5) can
be re-written as

Jepf = gJCG + ’LUyWT (6)

where w,, are neuron y’s weights. Because the addition
of a one rank matrix to a rank n matrix can change
all n eigenvalues, the overall network is trained. The
details of the supervised recursive least squares training
are in [2] and are omitted from this paper for brevity.

2.3 Dimensionality Reduction

On a per-trial basis, it is useful to visualize how the
neuron firing rates evolve over time. However, to cap-
ture the ensemble activity, this would require visual-
izing a 96 dimensional space, which is not tractable.
Moreover, it has been reported that most of the vari-
ance of motor neural data for reaching tasks like ours
can be captured in approximately 10 dimensions [4].
Thus, dimensionality reduction algorithms can be used
to project neural data onto 3 dimensions and visualize
trajectories trial-by-trial in a 3D space.

2.3.1 Principal components analysis

PCA analysis is performed as formulated in CS 229
lectures [5]. The data, X, have rows correspond-
ing to the channel number and columns correspond-
ing to smoothed firing rates over time in 20 ms bins.
The firing rates are binned by counting the number
of spikes occurring in non-overlapping 20 ms intervals
and are square rooted to stabilize the firing rate vari-
ance. Smoothing is achieved by convolving the binned
firing rates with a Gaussian kernel of standard devia-
tion 30 ms. Thus, dimensionality reduction using PCA
requires two stages: (1) binning and smoothing of firing
rates and (2) dimensionality reduction.

2.3.2 Factor analysis

FA analysis requires both binning and smoothing of fir-
ing rates. As formulated in CS 229 lectures [5], z; is
the firing rate of channel ¢ at time ¢, z; is the latent
state dimension j at time ¢, and the overall z represents
the reduced dimensionality of the data. The data is for-

matted in matrix form, i.e. z = [,TTl ...axlp] where T

is the length of a trial, and z = [ZT1 . zTT] The out-
put, z = p+ Az is the key to visualization. In effect, z
can be viewed as coefficients which determine the con-
tribution of a column of A to x. However, the columns
of A are not orthonormal. Thus, we perform a singular
value decomposition (SVD) on A = UXV7T and trans-
form coordinates into Z = XV 7z so that Az = UZ. U is
an orthogonal matrix comprising the left singular vec-
tors of A and % is the rotated (by V) and scaled (by
Y)) version of z. To visualize trajectories, we calculate
E[z]z] = AT (AAT + \Il)fl (x — p) as derived in CS
229 lectures using jointly Gaussian random variables
[5]. Then, E [2|z] = SVTE [z|x] is the orthonormalized
trajectory which can be projected onto the bases, U.

2.3.3 Gaussian process factor analysis

Gaussian process factor analysis (GPFA) is similar to
factor analysis, but assumes that the latent states are
related through time via a Gaussian process (GP).
Thus, if 2; ; is the latent state for dimension 4 at time
Jj then, z;. ~ N (0, K;) where covariance matrix K; is
element-wise

(t1 — t2)°

K; (t1,ta) = 0% ,exp | —
1(17 2) O—f,l Xp< 27_12

> + 0—72171'5751,752 (7)

where d;; is the Kronecker delta, and o7, and o ;
are constant pre-determined variances. The parame-
ters pu, A, U can be estimated using maximum likelihood
and expectation maximization as derived in [4] and the
7; can be optimized via gradient descent. The effect of
relating the latent states through a Gaussian process
is to effectively smooth the data. Thus, GPFA is not
a two-stage algorithm, but rather an algorithm which
simultaneously smooths the data and performs dimen-
sionality reduction.

2.3.4 Algorithmic Choices

One shortcoming of PCA is the lack of a noise model.
Neurons can be well-characterized as a Poisson process,
indicating that a neuron’s firing rate variance is approx-
imately equal to its firing rate mean. Since PCA seeks
dimensions which maximize variance, it favors channels
with higher firing rates and incorrectly skews the bases.
Upon implementing PCA, we observed separated tra-
jectories across different reach directions; however, the
trajectories were inherently more noisy on a trial-by-
trial basis as compared to the latter two algorithms.
These trajectories are not shown for brevity.

FA provides a major advantage over PCA in that it
allows individual neurons to have their own variance
and can therefore model neuron noise. Thus, unlike
PCA, it will not incorrectly weight neurons that have
high firing rates but are not necessarily informative.
Rather, FA seeks directions that maximize covariance

-1.5+

D2

Figure 3: The neural trajectories (GPFA) for 96 dimen-
sional data (96 channels of neural data) reduced to 3 di-
mensions under brain control with a modified Kalman
filter decoder. The trajectories are colored based on
target location and the bold trajectories are mean trial
trajectories. It is clear that reaches in different direc-
tions follow separate trajectories in space.

between neurons. We therefore observed that neural
trajectories using FA had lower across trial variance as
compared to that of PCA.

In both PCA and FA, smoothing and the dimension-
ality reduction are performed separately and cannot
inform each other. A major advantage of GPFA is
that smoothing and dimensionality reduction are done
simultaneously and can thereby be jointly optimized,
allowing for optimal smoothing. Moreover, GPFA has
been shown to be superior to FA and PCA in predicting
a leave-one-out-CV neuron firing rate [4]. In the neural
trajectories constructed using GPFA, we noticed that
the path curvature was smoother and had less across-
trial variance as compared to the two-step algorithms.
We therefore utilize GPFA in the following analyses.

3 Results

3.1 Behavioral-dependent visual space

trajectories

Figure 3 shows the neural trajectories on a trial-by-
trial basis across 8 different reach directions, denoted
by separate colors. There is clear separation of the
trajectories, and they occupy different regions of the
3 dimensional space. Furthermore, the order of the
trajectories mirror the relative position of the targets

acquired for actual hand reaches — red maps to a down-
ward left reach, orange to a downward reach, yellow to
a downward right reach, and so on.

3.2 Channel count

Signals received on each of the 96 channels contain
varying amounts of information. For example, a chan-
nel may be far away from any neurons and therefore
receive small signal, or it may be measuring action po-
tentials of a neuron that is not informative of reach
direction. Therefore, it is useful to have a way to rank
channels in order of importance, and observe how neu-
ral trajectories differ by using only a subset of channels.
Below, we investigate a ranking method to select a sub-
set of channels that are most informative.

3.2.1 Variance normalized maximum depth

The ranking metric we develop, variance normalized
maximum depth (MDV), was inspired by previous work
in neuroscience. The MDYV of a single channel is defined
as

maXycy z (y) B minyEY z (y) (8)
0-2

MDYV =
xr

where Z (y) is the average firing rate of the channel
when a reach in direction y is made and o2 is the firing
rate variance for that channel. The metric is a measure
of normalized “tuning depth,” or roughly, the maximum
difference in a channel’s firing rate across reach direc-
tions.

It is worth noting that it is possible to calcu-
late the mutual information between channel i and a
reach direction y by empirically determining the fir-
ing rate probability mass function (pmf) of that chan-
nel, px, (z;). We also determine the same firing rate
pmf conditioned on a reach direction ¥ = y, giving
px,|y (zily). With these pmfs, we can calculate the
mutual information between neuron 4 and reach direc-
tion via I (X;;Y) = H(X;) — H (X;]Y). A ranking of
channels using mutual information yields similar results
to MDV.

3.2.2 Visualization with different
counts

channel

When the number of channels used for dimensionality
reduction is decreased from 96 channels (Figure 3) to 24
channels (Figure 4) there is an obvious compression of
trajectory volume. We believe that by including fewer
noisy channels, the lower dimensional space is expanded
in a non-informative way. This is because even after
a lower dimensional basis is found, noisy channels are
projected into this lower dimensional space and thus
corrupt the trial-by-trial trajectories.

Figure 4: The neural trajectories (GPFA) for 24 di-
mensional data (24 channels of neural data) reduced
to 3 dimensions under brain control with a modified
Kalman filter. These traces occupy a smaller volume
than the trajectories of Figure 3.

3.3 Decoder variation

In Figure 3, 4, and 5, the neural trajectories are built
off a set of bases representing all reach directions for
the same mode of control even though only two reach
directions are visualized. In each mode of control, there
is clear separation of the upward (blue) and downward-
reaching (orange) trajectories. By analyzing differences
in the curvature and the across-trial-variance of the tra-
jectories, we can make hypotheses about neural control
strategy when operating under different modes of BCI.
For instance, the increase in across-trial-variance be-
tween different models may reflect robustness or sen-
sitivity of a decoding algorithm. It may also indicate
whether a reach is mostly ballistic or subject to on-
line corrections. Alternatively, it could simply indicate
increased variation in the dynamics of control. These
hypotheses will necessitate further scientific inquiry to
better understand. Because these three dimensions rep-
resent only a fraction of the variability in the dataset,
projections to a higher dimensional space would be re-
quired to fully quantify metrics.

4 Conclusions

In this project, we explored neural relationships be-
tween various control modalities and decoders utilizing
several dimensionality reduction techniques. We car-
ried out behavioral experiments in monkeys to gather
data to test these hypotheses, using both hand kine-
matics and real-time brain control tasks. Two BCI de-
coders were examined: a feedback-modified Kalman fil-

Figure 5: (left) The GPFA trajectories for downward (orange) and upward (blue) hand reaches, using only 24
channels. (right) The GPFA trajectories for downward (orange) and upward (blue) neural network decodes,

using only 24 channels.

ter and a novel FORCE neural network decoder. We
demonstrated the feasibility of the neural network de-
coder for online real time BCI. The differences be-
tween these decoders in contrast to native limb con-
trol were explored with PCA, FA, and GPFA. We ul-
timately settled on GPFA as the final tool for analy-
sis because of its ability to maximize separation in the
neural state representation. Additionally, the impact of
non-informative electrode exclusion on the smoothness
of the low-dimensional representation was examined.
Further detailed analysis is necessary to characterize
specific changes to decoders to improve performance.
However, one clear finding from this work that would
improve decoder robustness would be to preemptively
screen and remove electrodes that are not as informa-
tive and may be mis-modeled by the decoder. Taken
together, these findings can help inform subsequent de-
coder design and potentially improve clinical BCI util-
ity in translation.

5 Acknowledgments

We thank D. Sussillo for collaborating on the neural
network decoder. We are grateful to M. Risch and J.
Aguayo for veterinary care, and S. Eisensee for adminis-
trative support. We thank K. Shenoy for his guidance,
support, and resources.

6 References

1. Gilja V* Nuyujukian P*, Chestek CA, Cunning-
ham JP, Yu BM, Ryu SI, Shenoy KV (2010,
poster) High-performance continuous neural cur-

sor control enabled by a feedback control perspec-
tive. Frontiers in Neuroscience. Conference Ab-
stract: Computational and Systems Neuroscience
(COSYNE), Salt Lake City, UT.

. Sussillo, D, Abbott, LF (2009) Generating Coher-

ent Patterns of Activity from Chaotic Neural Net-
works. Neuron. 63:544-557.

Churchland MM*, Yu BM*, Cunningham JP, Sug-
rue LP, Cohen MR, Corrado GS, Newsome WT,
Clark AM, Hosseini P, Scott BB, Bradley DC,
Smith MA, Kohn A, Movshon JA, Armstrong KM,
Moore T, Chang SW, Snyder LH, Lisberger SG,
Priebe NJ, Finn IM, Ferster D, Ryu SI, Santhanam
G, Sahani M, Shenoy KV (2010) Stimulus onset
quenches neural variability: a widespread cortical
phenomenon. Nature Neuroscience. 13:369-378.

Yu BM, Cunningham JP, Santhanam G, Ryu
SI, Shenoy KV*, Sahani M* (2009) Gaussian-
process factor analysis for low-dimensional single-
trial analysis of neural population activity. Journal
of Neurophysiology. 102:614-635.

Ng, A. 0S229 Lecture Notes. Stanford University,
Autumn 2010.

