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Abstract 
The Protein-Protein Interaction (PPI) networks play an important role in cellular 

functionality. Due to their importance PPI networks have gained a wide spread 

attention from the research community. The PPI networks have various practical 

applications in biology in general, and in target drug discovery in particular. The PPI 
networks are, however, mostly unknown and inference of these biological networks 

using machine learning methods is far from trivial. In the past few years several 

machine learning models are developed to infer these networks. Despite the 
significant contributions, these models either have high False Positive Rates or they 

don’t scale to infer networks from real world high dimensional biological data, most 

of which contains high number of missing values. In this report we’ll present Hyper 

Scalable Network Inference Machine (hSNIM) to infer large scale PPI networks. The 
model not only scales to infer human interactome (human PPI network) but also can 

provide the best accuracy compared to the existing methods. The model achieves this 

accuracy by fusing various forms of data like Gene Expression, Partial PPI data, Sub-
cellular localization and Phylogenetic trees. The experimental results corroborate that 

hSNIM has highest AUC 0.82 compared to existing proposed models like Kernel 

Metric Learning (KML), Kernel Canonical Correlation Analysis (KCCA) and Matrix 

Completion with EM (MCEM) when applied to infer Yeast interactome. The hSNIM 

model achieved 98% accuracy when it was used to infer human PPI network, which 

shows its ability to infer large scale networks accurately. 
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1 Introduction  

 

Proteins interact to form cellular functionality and the complete repertoire of these interaction is 

called Protein-Protein Interaction (PPI) network. From biological standpoint PPI networks not 
only help to elucidate the biological process and provide holistic picture of the biological 

processes, but also have huge applications in biology for instance, in tailored drug discovery.  

 A PPI network can be viewed as a graph G{V,E} with set of vertices V{v1,v2, …, vn} and edges 
E{e1,e2,…em} [1]. Each node in the graph represents a protein and the edge between a pair of 

proteins represents interaction. The objective is to fully infer G from the given experimental data 

(See Figure 1). To do so one of the approaches applied by biologists today is to do in vivo 

experiments to find out interacting proteins. Once the interaction is observed under certain 
experimental conditions, it is reported in the literature in the form of research publications. The 

process is very time consuming and costly since usually this type of experiments usually, at best, 
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find out interacting proteins in the scale of tens. However, the total proteins in human are 

estimated to be in millions and we don’t know the exact number today.  
 To address this problem several Machine Learning (ML) models have been proposed to infer 

PPI networks. The models range from simple classification models to very sophisticated versions 

of Bayesian Networks and Kernel Methods.  

 

 
(a) 

 

 
(b) 

Figure 1. (a) Protein-Protein interaction network where vertices represent proteins and edges 

represent interaction. The dotted and solid lines denote inferred and manually curated edges 
respectively. Absence of edges between the vertices shows that there was no evidence of the 

interaction between the proteins. (b) The PPI network inference can be considered as a binary 

classification y = {+1,-1} problem where +1 means edge exists between vertices and -1 is for the 
vertices where edge doesn’t exist. The objective is to find label for the protein pairs labelled ? in 

the figure (Image sources: K. Bleakley et al. [1]). 

 

 Despite all these efforts, however, the accuracy of the inferred PPI networks is still needs to 
be improved to gain the confidence of biologists. The low accuracy of the predicted PPI networks 

can be attributed to, but not limited to: 

 
1- Inherent noise and variation in the biological data 

2- Lack of available training data 

3- High dimensionality 

4- Missing values  

5- Data has number of features m >> number of samples n 

6- Complexity of the biological systems 

Despite all these challenges, the accuracy of the predicted networks can be significantly improved 
if ML models could make use of all the information available. Generally PPI information could 

be inferred from the Gene expression data, In vivo PPI experimental data, Sub Cellular 

Localization (SCL) and phylogenetic profiles and in some cases from Y2H screens.  
 This report will address some of aforementioned problems by introducing a new ML model, 

Hybrid Scalable Network Inference Machine (hSNIM). The hSNIM achieves high accuracy 

compared to the existing models by accurately fusing the information present in the Gene 
expression, partial PPI network information, SCL, and phylogenic profiles data. The rationale 

behind our proposed approach is that each set of the data captures part of the picture and thus by 

merging the classification outcome from each data will help us to infer more accurate PPI 

networks. The model hSNIM model has shown not only to scale to infer human interactome 
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unlike existing models present in the literature but also has demonstrated improved accuracy 

when compared against existing models like Kernel Metric Learning (KML), Kernel Canonical 

Correlation Analysis (KCCA) and Matrix Completion with EM (MCEM).  

In addition as alluded to earlier, biological data contains missing data. The problem is more 

prevalent when different types of experimental data like SCL data, Gene expression data, and 

phylogenetic profiles are combined together. It is therefore, imperative to use a model which 
should be able to infer networks in the presence of missing information. Later in this report we’ll 

show that hSNIM could capture human interactome in the presence of missing information unlike 

aforementioned competitive models. 
Rest of the report consists of following Sections. Section 2 presents an overview of existing 

techniques while detail architecture and theory behind hSNIM is presented in the Section 3. 

Section 4 provides discussion on the experimental results both on Human and Yeast data while 
conclusions are drawn in Section 5. 

2 Review of Existing PPI Inference Models: 

This Section will provide an overview of the existing PPI inference models. The models 

presented here are the only ones which combine different biological data to infer PPI. For detailed 

overview on PPI inference methods we refer interested readers to [1-3]. 

2.1.1 Similarity based Network Inference [4]: 

In this approach kernel K is used as a similarity metric. If the kernel value  > threshold Γ then 

proteins are considered to be interacting and edge is drawn between them. 

2.1.2 Kernel Canonical Correlation Analysis (KCCA)  

In this approach the vertices data is mapped to the Euclidean space then similarity based approach 

(Section 2.1.1) is used to find edges between them. To map the input to the Euclidean space, the 
known network (partial interaction network or training data) is transformed to a positive semi 

definite matrix. For this, usually diffusion kernel is used [5]. The correlating directions are then 

searched in the transformed space and the geometric data by Canonical Correlation Analysis . 
The parameters for the model are canonical directions d, and a regularization parameter λ. To 

compare fairly with the model we used the d = 20 and λ = 0.01 as the model was reported to have 

best accuracy for these parameters by Yamanishi et al [4]. 

2.1.3  Kernel Metric Learning (KML)  

In this method a metric is learned from the training data before apply approach mentioned in 

Section 2.1.1 to bring connected vertices closer and non-connected vertices to be further apart 
from each other [1]. The KML algorithm also like KCCA depends on a regularization parameter 

λ and a dimension of projection. Vert et al; [6] observed best results for d = 20 and λ = 2 and 

therefore we’ve used the same parameters in the report. 

2.1.4  Matrix Completion with EM (MCEM): 

The MCEM algorithm fills missing entries in the adjacency matrix by using kernel matrix 

obtained from the genomic data. The entries are filled to minimize the geometric distance 

with the resulting complete matrix. The method is parameter free and has closed form 

solution [1]. 
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3 Hyper Scalable Network Inference Machine: 

The hSNIM model consists of four layers (Figure 2). The layers are: 

1- Pre-Processing (Layer 1) 

2- Individual Model Reconstruction (Layer 2) 

3- Networks Integration (Layer 3) 

4- Meta Learning (Layer 4) 

Each of the layers and how they are combined will be described in the following subsections. 

 

Figure 2. Hyper Scalable Network Inference Machine 

3.1.1 Pre-Processing 

The hSNIM first pre-processes the data and adds additional features to improve the prediction 

accuracy.  The data input set X consists of expression data ℓ ∈ ℝ� ×�	, SCL localization data 

ℒ ∈ ℝ� ×��, phylogenetic profiles ℑ ∈ ℝ�×�
 , and partial PPI networks ℊ.  

 The expression data ℓ is first normalized to have mean zero and �� = 1. Then for each pair 

of protein {�j, �k}, spearman correlation ρ is calculated. It adds additional information of gene 
co-regulation. After this data is discretised using Fayyad et al;[7] algorithm. The rationale behind 

this was that we wanted to test the accuracy of the models against Naïve Bayes. However, it is an 

optional step and can be ignored since if decision trees are used, as in hSNIM, they are capable of 

dealing with the continuous values. The expression pre-processed data ℓ� ∈ ℝ�×�	�	 = [ℓ, �] is 

then generated by concatenating ℓ�, ℓ� , ��� �. 

The SCL localization data ℒ ∈ ℝ� ×��is a binary valued data where 
ℒ� = 1; If protein in located in the cellular compartment 1

ℒ� = 0; If proteins is not located in the cellular compartment 14 

For a given pair of proteins {�j, �k}, hSNIM calculates conditional probabilities P(ℑ�
� = ℑ��) in 

the pre-processing steps and adds this P-value to the data. The rationale behind this step is that if 

Layer 1: Data 

Preprocessing

Layer 2: Individual 

Model Construction 

from expression, 

Protein localization 

and Phylogenetic 

profiles

Layer 3: 

Network 
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the proteins are co-located in a compartment then there is a high chance that they’ll interaction. 

However, if the proteins are never collocated in a compartment they’ll not have physical 

interaction. The SCL pre-processed data ℒ8 ∈ ℝ�×���	 = [ℒ, P] is then generated by 

concatenating  ℒ � , ℒ� , ��� P. 

Similarly, the phylogenetics data ℑ ∈ ℝ�×�
is a binary valued data where 
ℑ� = 1; If protein is conserved in species 1

ℑ� = 0; If protein is not conserved (or absent) in species 14 

Like SCL, for a given pair of proteins π = {�j, �k}, hSNIM calculates conditional 

probabilities P(ℑ�
� = ℑ��). This provides additional information that if both proteins are conserved 

in the same species then they can probably interact. The phylogenetic pre-processed data 

ℑ< ∈ ℝ�×�
�	 = [ℑ, P] is then generated by concatenating ℑ�, ℑ� , ��� P. 

3.1.2 Individual Model Construction 

 

In the next step the hSNIM generates individual models ℎℓ(. ), ℎℒ(. ) ���  ℎℑ(. ) By training 

classifiers on ℓ� ∈ ℝ�×�	�	 ℒ8 ∈ ℝ�×���	 and ℑ< ∈ ℝ�×�
�	. Each model  

ℎℓ(. ), ℎℒ(. ) ���  ℎℑ(. ) is trained by its corresponding ℓ�, ℒ8  and ℑ< data. For a given example 

protein pair πi each of the models then generates individual output ?ℓ@� , ?ℒ@�  ��� ?ℑ@ � . These 

outputs are then concatenated to form
 A� � =  {  ?ℓ@ � , ?ℒ@�  ��� ?ℑ@ �}. The hSNIM used C4.5 decision 

trees [8] to generate the hypothesis ℎℓ(. ), ℎℒ(. ) ���  ℎℑ(. ). We’ve used standard entropy as cut-

off criteria in these decision trees. For details we refer interested readers to [9]. 

3.1.3 Integrated Model 

Once the intermediate output A� � is generated, in this step, the final interaction probability of 

interaction is computed by logistic regression using:  

 

( 1| )
log .

( 0 | )

TP y x
x

P y x
α β

=
= +

=
 

(1) 

where
.

1
( 0 | )

1
T

x
P y x

eα β+
= =

+
 and 

.

.
( 1| )

1

T

T

x

x

e
P y x

e

α β

α β

+

+
= =

+
 

 

In this model Parameter α and β are computed using Maximum likelihood.  

3.1.4 Error Reduction through Meta Learning 

 

The hSNIM uses bagging by Breiman [10] in the last stage. The choice of bagging over boosting 
here is empirical where we observed improved results when trees were combined using bagging. 

4 Results and Discussion 

 

To rigorously test the performance of the models we used Yeast data from  (<et al). The data 

contains interactions of 668 × 668 proteins.  Missing values were removed from the data so that 

models could be compared. The data set X consists of expression data ℓ ∈ ℝDDE ×	FG, protein 

localization data ℒ ∈ ℝDDE ×��, phylogenetic profiles ℑ ∈ ℝDDE ×	HF , and partial PPI networks ℊ. 
For the sake of fair comparison for Yeast data we only kept high confidence interactions 
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supported by several experiments which, after removal of proteins without interaction, resulted in 

a total of 2782 edges amongst 668 proteins as used by Yamanishi et al, [4]. The negative data was 
randomly generated and to get confidence in the experimental results we used 10 fold cross 

validation and ran models 1000 times to collect the AUC. The hSNIM model is tested against 

KCCA, KML and MCEM. For KCCA and KML we’ve used the parameters mentioned in Section 

(2).  
 

Table 1 shows average AUC of 1000 runs for each model. The hSNIM clearly performed 

better than the comparative models for the yeast data set. Figure 3, shows example ROC plots 
generated when hSNIM was used to infer Yeast PPI network. 

 

Table 1. Area under the Curve (AUC) for the Yeast data 

Model hSNIM KML KCCA MCEM 

AUC 0.82 0.77 0.74 0.79 

 

  
Figure 3. ROC plots for the Yeast PPI network 

 
To further validate the performance of hSNIM we used tested the model to infer human 

interactome. Inference of human PPI network poses new challenges since the data is not only 

high dimensional but also there is very little known about human PPI network and therefore, there 
are lots of missing values unlike Yeast.  

Table 2 shows accuracy of individual classifiers in Layer 2 (Figure 2). We used Naïve Bayes 

as a baseline for the comparison and as expected Decision trees performed better than Naïve 
Bayes models. A clear improvement can be observed when only Phylogenetic data was used to 

infer PPI. Decision trees showed 78.10% accuracy versus 56.83% in this case and thus were a 

clear choice to be part of the model.  

Table 3 shows when bagging was applied to the models in Layer 2 and it can be observed that 
bagging significantly improved the prediction accuracy. Again clear improvement was observed 

in the case of phylogenetic data where bagging improved accuracy from 78.10% t0 83.31%. 

However, the most improvement is seen when hSNIM (Integrated) was used to infer human PPI 
network.  

Tables 2 and 3 also show that the most important PPI predictor data in this case are 

phylogenetic profiles while the weakest predictor data are SCL. The reason for SCL being a weak 
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predictor is also because for human the data is far from complete and most of the proteins don’t 

have localization information attached to them. We also did test hSNIM when we included all the 
proteins which have at least one of the three dataset available and the average accuracy dropped 

to 71%.  

It should be noted that we’ve equal number of positive and negative examples in the human 

test data and therefore accuracy is a reasonable metric here.  
 

Table 2. Accuracy of the models on Human Data 

Data Types Phylogenetics Expression SCL 

Models  
Naïve Bayes 56.83 58.70 54.68 

Decision Trees 78.10 63.41 56.64 

 

Table 3. Accuracy of the models with Bagging on Human Data 

Data type 
Phylogenetics Expression SCL 

hSNIM 

(Integrated) 

Accuracy 83.31 67.29 56.64 98.79 (± 0.002) 

 

Tables 3 also underpins that the best case scenario is when all the data is present for 

prediction, in which case accuracy is 98.79 but in the worst case scenario when only SCL data is 
present it can dramatically drop to 56.67%. It is important to note, however, that expression data 

is collected using high throughput microarrays so the chances to have expression data missing for 

the coding gene are rare. The comparative models couldn’t be tested for human data since the 
current implementation for them required complete data, however the results on the Yeast data 

show that hSNIM has shown better performance than KML, KCCA and MCEM and also has the 

ability to infer networks in the presence of missing data. 

5 Conclusions: 

 
This report presented Hyper Scalable Network Inference Machine (hSNIM) to infer Protein-

Protein Interaction (PPI) networks. The model not only scales to infer human interactome (human 

PPI network) and has unique ability to deal with missing information but also can provide the 
best accuracy compared to the existing methods. The model achieved this accuracy by the virtue 

of fusing various forms of data like Gene Expression, Partial PPI data, Sub-cellular localization 

and Phylogenetic tree. The experimental results underpin that hSNIM has highest AUC 0.82 
compared to existing proposed models like Kernel Metric Learning (KML), Kernel Canonical 

Correlation Analysis (KCCA) and Matrix Completion with EM (MCEM). The model also 

achieved 98.79% accuracy when it was applied to infer human interactome, which underscores its 

ability to not only infer large scale PPI networks but also demonstrates that it can achieve low 
False Positive Rate. 
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