
Figure 1: StanfordDog on
the Gap terrain

Robot Motion for Obstacle Negotiation

Anish Adukuzhiyil, Harshit Singh, Pavani Vantimitta

Stanford University

{ajohna, harshs, pavani}@stanford.edu

1. Introduction

We seek to test for the capability of a quadruped

programmable robot to overcome barriers

(generally referred to as the obstacle negotiation

problem), given appropriate machine learning

algorithm(s) for motion planning and

execution. We programmed a robot to run in an

environment with different terrains and present

results from our trial runs using a combination of

Principal Component Analysis (PCA) and

supervised learning. Error estimates under varying

conditions of the learning algorithms have also

been highlighted.

2. Present approaches

In related work, one popular approach has been to

apply Reinforcement Learning [1]. Some other

approaches have focused on adapting to terrains

using mechanically higher designs such as clever

mechanical design of legs that automatically adapt

to terrains [2,3]. Another different approach has

been to use Gait (using a rule-based algorithm); a

method of free gait generation for quadrupeds is

presented in [4]. There are many more approaches

that have been used to tackle this problem.

3. Problem description

Given the task of obstacle negotiation, the challenge

is to first identify the obstacles which the robot has

to necessarily cross in order to reach its goals, and

also develop the set of motions that it will need to

execute to successfully overcome those obstacles.

In view of this objective, this project involves

implementation and evaluation of techniques using

which the robot can learn to successfully traverse

various kinds of terrains through an iterative

process of sensing, planning and execution.

4. Environment Description

The StanfordDog (Figure 1) is a four-legged

programmable

robot (LittleDog,

made available by

Boston Dynamics)

used for motion

planning research

at the STAIR lab.

The robot comes

with a control and

planning library

with a Matlab

interface.

The Vicon Motion

Capture (MoCap) system can capture and model

the terrain and its environment in a 3D setting.

This information is then processed into parameters

such as joint angles, body posture and terrain

location and made available to the user through the

Robot API.

We developed a set of motions keeping in mind the

robot's center of gravity and the range of

parameter values of each of its leg, hip and knee

joints such that no motion execution causes the

robot stance to become unstable. All eight motions,

along with their defining features, are listed in

Table 1.

Note that left and right shuffle are not symmetric

Forward

Motion

Backward

Motion

Left Shuffle Right Shuffle Left Rotation Right

Rotation

Jump Motion

(Barrier)

Jump Motion

(Gap)

D
is

ta
n

ce

m
o

v
e

d

A
n

g
u

la
r

S
h

if
t

D
is

ta
n

ce

m
o

v
e

d

A
n

g
u

la
r

S
h

if
t

D
is

ta
n

ce

m
o

v
e

d

A
n

g
u

la
r

S
h

if
t

D
is

ta
n

ce

m
o

v
e

d

A
n

g
u

la
r

S
h

if
t

D
is

ta
n

ce

m
o

v
e

d

A
n

g
u

la
r

S
h

if
t

D
is

ta
n

ce

m
o

v
e

d

A
n

g
u

la
r

S
h

if
t

M
a

x
im

u
m

B
a

rr
ie

r

W
id

th

M
a

x
im

u
m

H
e

ig
h

t

M
a

x
im

u
m

G
a

p
 W

id
th

M
a

x
im

u
m

H
e

ig
h

t

3.97 0.13 4.34 1.48 1.08 1.67 0.95 0.44 0.52 10.6 0.34 9.3 10 11 14 4

Table 1: All distance and height measurements are in centimeters. Theta measurements are in degrees.

Figure 2: Preprocessing Cycle for the Heightmaps:
1) Slicing 2) Edge detection (Canny) 3) Dilation
4) Element wise multiplication 5) Final feature
representation for a Heightmap

even though the parameter values for the atomic

maneuvers are chosen to be symmetric. We believe

this is to be attributed to differential motor power

in the joints. For all our trial runs, we used a fixed

step size of 2 for the shuffles, and 1 for all other

motions.

An optimal motion, given a current position of the

robot, is defined as the motion that the robot

should execute in order to bring it closer towards

the goal and consequently, closer to any obstacle

lying between itself and the goal. When the robot is

at the obstacle, the optimal step is then the special

maneuver that will let the robot overcome it.

4.1 Heightmaps

The system returns an image representation, which

we call ‘Heightmap’, of the 3-D space of the robot’s

environment, centered on itself. One way of looking

at the Heightmap is as a 2-dimensional image of

size N-by-N pixels, where each pixel’s index into

the matrix is given by the x and y coordinates of the

pixel in 3-D space, and the ‘intensity’ value of each

pixel stores the z coordinate of the same spatial

representation.

5. Methodology

Identifying terrain features in the locality of the

robot is definitely important, but there is an

important caveat to be considered. Since the robot

is only concerned with getting to the final goal, it

should not concern itself with barriers that do not

lie in the direct path to this goal. The maximum

displacement that a robot can achieve in any

motion also limits the neighborhood of interest.

Recognition of the obstacle is not necessary for the

purpose at hand. We only need the shape of the

obstacle (i.e., its contour in 3 dimensions).

For the purpose of motion, it should not matter if

the robot executes a non-optimal motion as long as

it does not fall off the terrain board or hits the

obstacle. At the edges of the board and near the

obstacle, however, it is imperative that the motion

executed by the robot is only the one that is

deemed to be optimal by the training set.

5.1 Essential Features

Keeping these above in mind, it appears that the set

of sufficient features that enable selection of the

optimal motion in any position would have to

include:

• Representation of objects (possible barriers) in

the robot’s immediate neighborhood in terms

of their position and orientation as concern the

robot.

• Direction of the final goal.

The test data should be compared on the basis of

the optimized feature space to the learned training

data.

5.2 Experimental Setup

For the purpose of our experiment, we used two

flat terrain boards, positioned at the origin of

MoCap's global coordinates. Between the two

boards, we either kept a raised barrier across the

breadth of the boards, or maintained a gap between

the boards. We use the term ‘barrier’ to denote a

raised bar in the terrain, and the term ‘gap’ to

denote a depressed region within the terrain.

We then collected a set of 300 Heightmaps

corresponding to different positions of the robot on

the gap terrain. We labeled each of these height-

maps with the maneuver determined to be the

optimal next motion. These were manually

determined, first by looking at the Heightmaps only,

and then verified by getting the robot to execute

the maneuvers in the given context.

6. Feature Space Reduction

6.1 Initial Pre processing

We processed the Heightmaps in order to reduce

the number of irrelevant features being considered.

For a Heightmap, only the z values around an edge

were taken as features, while the rest of the pixels

were set to 0. We implemented a Gaussian

weighting filter to accentuate image features closer

to the robot. The processing was carried out in the

sequence as shown in Figure 2.

6.2 Feature Extraction

The state-of-the-art in object recognition

1
2

3
4

5 4

Figure 3.: Distance offset
from barrier = x
Orientation to goal = theta

algorithms have used decision trees based on

feature space transformations such as Haar

wavelets [6,7], and SVMs [8]. However, plain

image-based comparisons such as these would not

work well in our case.

One reason is that these approaches allow for

rotational and translational invariance of object

shapes, which assumption would lead to wrong

results in our case. Also, as argued above, we

believe the choice for next optimal motion depends

not just on the robot’s local environment, but also

the direction of the goal and the next barrier, some

things that image-based features do not

incorporate.

Therefore, we decided to modify a simple image-

characteristic based feature representation in

order to incorporate the more relevant features.

We settled on Principal Component Analysis (PCA)

as a good starting point, as it has been used

extensively in applications like Face Recognition

and Fingerprint Identification.

6.3 Principal Component Analysis

In the base form of this algorithm, we consider each

Training Heightmap as a feature matrix, with each

pixel position as a unique feature. Across all

training examples, the mean and variance of each

feature is first calculated and then used to

normalize the feature matrix. Now, the eigenvalues

and eigenvectors of this matrix are calculated. We

then reduce the feature space based on these

eigenvalues by thresholding them at some

constant.

After thresholding, those eigenvectors whose

eigenvalues were not thresholded form the eigen-

space of our problem. Now, we take the test

Heightmap and find its projection on the eigen-

space. The Euclidean distance between this and the

each feature vector in the training matrix is

calculated. The least of these calculated distances

gives the best matching Heightmap from the

labeled training set, which we hope would also

provide the best maneuver in the current scenario.

Essentially, we are faced with a multi-classification

problem, identifying the most appropriate

maneuver to be executed on the basis of feature-

based similarity of current context to previously

seen situations.

6.3.1 Errors in General PCA

As explained, PCA was used to extract only the

pertinent features (say k) on a training set by using

a threshold on the variance of the features from the

mean. These k features then were used as a basis

for comparison of a new Heightmap (test data)

with the set of training Heightmap data. Thus we

find the closest match in the labeled data, and

therefore the best optimal maneuver as well.

As shown later, the PCA approach does provide

quite accurate results based solely on height-map

image characteristics. However, when we used

each pixel as a feature, in addition to matching the

closest images, it also matched to laterally shifted

versions of the input image. This was because the

eigenvectors corresponding to an orientation of the

robot will be in the same direction. Essentially,

different positions of the robot on the terrain can

have the same orientation in global coordinates.

6.4 Other Features
We experimented with a direction feature

extracted from MoCap’s global coordinate system,

given a fixed goal (on the other side of the obstacle).

We added another

feature – the

distance between

the barrier and the

robot. The first

obstacle that comes

in the path of the

robot should be the

most important

feature that the

robot should

consider.

6.5 Pruning

Given a Heightmap in the current context of the

robot, we used the value of the current orientation

(θ, as labeled in Figure 3) in order to find a subset

of the training Heightmaps that also have robot

orientation within a certain range of θ.

We later also used the distance between the robot

and the first edge of the obstacle between it and the

goal (x as labeled in Figure 3) to carry out similar

pruning of the Training set.

These pruned sets were then passed onto the PCA

module in order to obtain the best match to the

current Heightmap.

Figure 4 shows the distribution of Theta and x in

our training data set.

7. Optimization

7.1 Initial Selection of constants

Figure 5: Precision and Recall Curve for image
offset of 50, range of theta as 5, and range of
barrier distance as 10

Figure 4: Histograms showing the spread of a)
Barrier Distance and b) Orientation angle in the
Training Set

The issue of Heightmap size involves a tradeoff

between generality and more features. For the

images of size 50 by 25 cm that we are using, a

threshold value of 0 was needed as the returned

Heightmap was most often only a block image

composed of very few variation elements. The

threshold value can be chosen to best suit different

terrains under consideration.

We decided to keep the size offsets of the image

from the robots centroid to reflect the robot’s view

of its surroundings. While this is not being done in

absolute terms, we tried to incorporate the possible

shifts of view given the robot’s set of movements so

that it could see atleast as far ahead as the next

position it could get to. Since backward/forward

motions shift the robot by twice as much as

left/right shuffle, we kept the Heightmap aspect

ratio at 2:1.

7.2 Sensitivity Analysis

The most important parameters for our algorithm

are the Heightmap size on which the PCA is to be

performed, the ranges of values around the current

value of the robot’s orientation (θ), and the range

of values around the current value of the robot’s

distance from the nearest barrier.

From the different test runs, the optimal values of

image offset size were found to be 50 and 25 cm,

the optimal range of theta was found to be 5

degrees and the optimal range of distance from the

barrier was found to be 10cm. The precision recall

curve for these values is plotted in Figure 5.

8 Evaluation

There are two types of error measurement

techniques that we employed. One is intrinsic

evaluation, which we quantified by using precision

and recall. The other, and the more pertinent one to

the objective of the robot in question, is extrinsic

evaluation. This is the fraction of times the robot

successfully crosses the obstacle when starting at a

random position on the terrain.

We conducted Leave-one-out validation and

obtained precision/recall values to check for

accuracy in the predicted optimal motions. We

only tested on the gap terrain.

8.1 Intrinsic Evaluation

Using just the precision/recall, we get high values

of Fmean for the special jump-gap motion (8 in Fig.

5). This result is good because, as clarified earlier, it

is costly for the robot to be wrong as concerns the

jump motion.

The precision and recall values for jump=barrier

motion (7 in Fig. 5) were 0 as this motion was

never labeled as an optimal motion in our training

set of gap terrain Heightmaps.

The precision values for left (5 in Fig. 5) and right

rotation(6 in Fig. 5) are high (consistent with the

desired levels), since they have significant rotation

angles which could mean toppling over for

positions near the edge.

Since forward (1 in Fig. 5), backward (2 in Fig. 5),

left shuffle (3 in Fig. 5) and right shuffle (4 in Fig. 5)

motions do not require high precision and recall

values because they have been labeled as the

optimal next steps for positions of the robot

following which it has little danger of toppling off

the edges.

8.2 Extrinsic Evaluation

We defined the success rate as the number of times

the robot actually overcomes the obstacle. Starting

from random initial positions on the terrain, we

found the success rate to be 60%.

9 Error Analysis

We noticed that, often, the robot tended to fall over

the edge when its initial position was near the edge,

or when a motion brought it near the edge. This

means that the sequence of operations to obtain

the gradient of the Heightmap were not always

useful in this case. Another feature that we need

may need is the offset of the robot from the edges

of the terrain.

10 Directions for further work

In essence, supervised learning and PCA will work

well for familiar terrains. For terrains that have not

previously been seen, reinforcement learning

would be a good framework to integrate our

approach with.

Other work also involves improving upon the

maneuver set currently developed, in terms of

efficiency and parameters.

Another possible direction is to base the robot’s

assessment of its surrounding on data/images

captured from a sensor/camera placed on the

robot itself. This will enable motion planning from

the perspective of the robot, and a global motion

capture system would not be necessary. We tried

to best assess the implications of a robot-centric

view by taking as small a Heightmap as possible,

but much will depend upon what information the

sensor provides.

References

[1] Honglak Lee, Yirong Shen, Chih-Han Yu, Gurjeet

Singh and Andrew Y. Ng, “Quadruped Robot

Obstacle Negotiation via Reinforcement Learning”,

in International Conference on Robotics and

Automation, Orlando, Florida, USA, 2006

[2] S. Hirose, A. Nagabuko, and R. Toyama,

“Machine that can walk and climb on floors, walls,

and ceilings,” in International Conference on

Advanced Robotics, Pisa, Italy, 1991

[3] S. Hirose, K. Yoneda, and H. Tsukagoshi, “Titan

vii: Quadruped walking and manipulating robot on

a steep slope,” in International Conference on

Robotics and Automation, Albuquerque, New

Mexico, USA, 1997

[4] S. Bai, K. H. Low, G. Seet, and T. Zielinska, “A

new free gait generation for quadrupeds based on

primary/secondary gait,” in International

Conference on Robotics and Automation, 1999

[5] Paul Viola, Michael Jones, "Rapid Object

DetectionUsing a Boosted Cascade of Simple

Features" (2004)

[6] Viola, P. and Jones, M. 2001. Rapid object

detection using a boosted cascade of simple

features. In Computer Vision and Pattern

Recognition, vol. 1, pp. 511–518.

[7] C. Bahlmann, B. Haasdonk, and H. Burkhardt.

Online handwriting recognition with support

vector machines—a kernel approach. In Proc. of the

8th IWFHR, pages 49–54, 2002.

Features used Heightmap Slice +

Gradient + Gaussian

Filtering(100X50)

Heightmap Slice +

Gradient + Gaussian

Filtering (100X50)

Heightmap Slice +

Gradient + Gaussian

Filtering (100X50)

Pruning basis used Orientation Range Orientation Range +

Barrier Distance

No of training examples

chosen for PCA

300 (all) 30-40 5-15

Average Fscores for

motion classes (1-7)

0.2905 0.3395 0.3540

Fscore for motion class 8

(Jumping the Gap)

0.6957 0.9474 0.9474

Table 4: Comparison of results obtained using different pruning method for PCA selection

