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1. Introduction 

We seek to test for the capability of a quadruped 

programmable robot to overcome barriers 

(generally referred to as the obstacle negotiation 

problem), given appropriate machine learning 

algorithm(s) for motion planning and 

execution.  We programmed a robot to run in an 

environment with different terrains and present 

results from our trial runs using a combination of 

Principal Component Analysis (PCA) and 

supervised learning. Error estimates under varying 

conditions of the learning algorithms have also 

been highlighted. 

2. Present approaches 

In related work, one popular approach has been to 

apply Reinforcement Learning [1]. Some other 

approaches have focused on adapting to terrains 

using mechanically higher designs such as clever 

mechanical design of legs that automatically adapt 

to terrains [2,3]. Another different approach has 

been to use Gait (using a rule-based algorithm); a 

method of free gait generation for quadrupeds is 

presented in [4]. There are many more approaches 

that have been used to tackle this problem.  

3. Problem description 

Given the task of obstacle negotiation, the challenge 

is to first identify the obstacles which the robot has 

to necessarily cross in order to reach its goals, and 

also develop the set of motions that it will need to 

execute to successfully overcome those obstacles. 

In view of this objective, this project involves 

implementation and evaluation of techniques using 

which the robot can learn to successfully traverse 

various kinds of terrains through an iterative 

process of sensing, planning and execution. 

4. Environment Description 

The StanfordDog (Figure 1) is a four-legged 

programmable 

robot (LittleDog, 

made available by 

Boston Dynamics) 

used for motion 

planning research 

at the STAIR lab. 

The robot comes 

with a control and 

planning library 

with a Matlab 

interface. 

 
The Vicon Motion 

Capture (MoCap) system can capture and model 

the terrain and its environment in a 3D setting. 

This information is then processed into parameters 

such as joint angles, body posture and terrain 

location and made available to the user through the 

Robot API. 

We developed a set of motions keeping in mind the 

robot's center of gravity and the range of 

parameter values of each of its leg, hip and knee 

joints such that no motion execution causes the 

robot stance to become unstable. All eight motions, 

along with their defining features, are listed in 

Table 1.  

Note that left and right shuffle are not symmetric 
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3.97 0.13 4.34 1.48 1.08 1.67 0.95 0.44 0.52 10.6 0.34 9.3 10 11 14 4 

Table 1: All distance and height measurements are in centimeters. Theta measurements are in degrees. 



Figure 2: Preprocessing Cycle for the Heightmaps: 
1) Slicing   2) Edge detection (Canny)   3) Dilation 
4) Element wise multiplication   5) Final feature 
representation for a Heightmap 

even though the parameter values for the atomic 

maneuvers are chosen to be symmetric. We believe 

this is to be attributed to differential motor power 

in the joints. For all our trial runs, we used a fixed 

step size of 2 for the shuffles, and 1 for all other 

motions. 

An optimal motion, given a current position of the 

robot, is defined as the motion that the robot 

should execute in order to bring it closer towards 

the goal and consequently, closer to any obstacle 

lying between itself and the goal. When the robot is 

at the obstacle, the optimal step is then the special 

maneuver that will let the robot overcome it. 

4.1 Heightmaps 

The system returns an image representation, which 

we call ‘Heightmap’, of the 3-D space of the robot’s 

environment, centered on itself. One way of looking 

at the Heightmap is as a 2-dimensional image of 

size N-by-N pixels, where each pixel’s index into 

the matrix is given by the x and y coordinates of the 

pixel in 3-D space, and the ‘intensity’ value of each 

pixel stores the z coordinate of the same spatial 

representation. 

5. Methodology 

Identifying terrain features in the locality of the 

robot is definitely important, but there is an 

important caveat to be considered. Since the robot 

is only concerned with getting to the final goal, it 

should not concern itself with barriers that do not 

lie in the direct path to this goal. The maximum 

displacement that a robot can achieve in any 

motion also limits the neighborhood of interest.  

Recognition of the obstacle is not necessary for the 

purpose at hand. We only need the shape of the 

obstacle (i.e., its contour in 3 dimensions). 

For the purpose of motion, it should not matter if 

the robot executes a non-optimal motion as long as 

it does not fall off the terrain board or hits the 

obstacle. At the edges of the board and near the 

obstacle, however, it is imperative that the motion 

executed by the robot is only the one that is 

deemed to be optimal by the training set. 

5.1 Essential Features 

Keeping these above in mind, it appears that the set 

of sufficient features that enable selection of the 

optimal motion in any position would have to 

include: 

• Representation of objects (possible barriers) in 

the robot’s immediate neighborhood in terms 

of their position and orientation as concern the 

robot. 

• Direction of the final goal. 

The test data should be compared on the basis of 

the optimized feature space to the learned training 

data. 

5.2 Experimental Setup 

For the purpose of our experiment, we used two 

flat terrain boards, positioned at the origin of 

MoCap's global coordinates. Between the two 

boards, we either kept a raised barrier across the 

breadth of the boards, or maintained a gap between 

the boards. We use the term ‘barrier’ to denote a 

raised bar in the terrain, and the term ‘gap’ to 

denote a depressed region within the terrain. 

We then collected a set of 300 Heightmaps 

corresponding to different positions of the robot on 

the gap terrain. We labeled each of these height-

maps with the maneuver determined to be the 

optimal next motion. These were manually 

determined, first by looking at the Heightmaps only, 

and then verified by getting the robot to execute 

the maneuvers in the given context. 

6. Feature Space Reduction 

6.1 Initial Pre processing 

We processed the Heightmaps in order to reduce 

the number of irrelevant features being considered.   

For a Heightmap, only the z values around an edge 

were taken as features, while the rest of the pixels 

were set to 0. We implemented a Gaussian 

weighting filter to accentuate image features closer 

to the robot. The processing was carried out in the 

sequence as shown in Figure 2. 

 
6.2 Feature Extraction 

The state-of-the-art in object recognition 
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Figure 3.: Distance offset 
from barrier = x 
Orientation to goal = theta 

algorithms have used decision trees based on 

feature space transformations such as Haar 

wavelets [6,7], and SVMs [8]. However, plain 

image-based comparisons such as these would not 

work well in our case. 

One reason is that these approaches allow for 

rotational and translational invariance of object 

shapes, which assumption would lead to wrong 

results in our case. Also, as argued above, we 

believe the choice for next optimal motion depends 

not just on the robot’s local environment, but also 

the direction of the goal and the next barrier, some 

things that image-based features do not 

incorporate. 

Therefore, we decided to modify a simple image-

characteristic based feature representation in 

order to incorporate the more relevant features. 

We settled on Principal Component Analysis (PCA) 

as a good starting point, as it has been used 

extensively in applications like Face Recognition 

and Fingerprint Identification.  

6.3 Principal Component Analysis 

In the base form of this algorithm, we consider each 

Training Heightmap as a feature matrix, with each 

pixel position as a unique feature. Across all 

training examples, the mean and variance of each 

feature is first calculated and then used to 

normalize the feature matrix. Now, the eigenvalues 

and eigenvectors of this matrix are calculated. We 

then reduce the feature space based on these 

eigenvalues by thresholding them at some 

constant.   

After thresholding, those eigenvectors whose 

eigenvalues were not thresholded form the eigen-

space of our problem. Now, we take the test 

Heightmap and find its projection on the eigen-

space. The Euclidean distance between this and the 

each feature vector in the training matrix is 

calculated. The least of these calculated distances 

gives the best matching Heightmap from the 

labeled training set, which we hope would also 

provide the best maneuver in the current scenario. 

Essentially, we are faced with a multi-classification 

problem, identifying the most appropriate 

maneuver to be executed on the basis of feature-

based similarity of current context to previously 

seen situations. 

 
6.3.1  Errors in General PCA 

As explained, PCA was used to extract only the 

pertinent features (say k) on a training set by using 

a threshold on the variance of the features from the 

mean. These k features then were used as a basis 

for comparison of a new Heightmap (test data) 

with the set of training Heightmap data. Thus we 

find the closest match in the labeled data, and 

therefore the best optimal maneuver as well. 

As shown later, the PCA approach does provide 

quite accurate results based solely on height-map 

image characteristics. However, when we used 

each pixel as a feature, in addition to matching the 

closest images, it also matched to laterally shifted 

versions of the input image. This was because the 

eigenvectors corresponding to an orientation of the 

robot will be in the same direction. Essentially, 

different positions of the robot on the terrain can 

have the same orientation in global coordinates.  

6.4 Other Features 
We experimented with a direction feature 

extracted from MoCap’s global coordinate system, 

given a fixed goal (on the other side of the obstacle).  

We added another 

feature – the 

distance between 

the barrier and the 

robot. The first 

obstacle that comes 

in the path of the 

robot should be the 

most important 

feature that the 

robot should 

consider.  

6.5 Pruning 

Given a Heightmap in the current context of the 

robot, we used the value of the current orientation 

(θ, as labeled in Figure 3) in order to find a subset 

of the training Heightmaps that also have robot 

orientation within a certain range of θ. 

We later also used the distance between the robot 

and the first edge of the obstacle between it and the 

goal (x as labeled in Figure 3) to carry out similar 

pruning of the Training set. 

These pruned sets were then passed onto the PCA 

module in order to obtain the best match to the 

current Heightmap. 

Figure 4 shows the distribution of Theta and x in 

our training data set. 

7. Optimization 

7.1 Initial Selection of constants 



Figure 5: Precision and Recall Curve for image 
offset of 50, range of theta as 5, and range of 
barrier distance as 10 

Figure 4: Histograms showing the spread of a) 
Barrier Distance and b) Orientation angle in the 
Training Set 

The issue of Heightmap size involves a tradeoff 

between generality and more features. For the 

images of size 50 by 25 cm that we are using, a 

threshold value of 0 was needed as the returned 

Heightmap was most often only a block image 

composed of very few variation elements. The 

threshold value can be chosen to best suit different 

terrains under consideration.  

We decided to keep the size offsets of the image 

from the robots centroid to reflect the robot’s view 

of its surroundings. While this is not being done in 

absolute terms, we tried to incorporate the possible 

shifts of view given the robot’s set of movements so 

that it could see atleast as far ahead as the next 

position it could get to. Since backward/forward 

motions shift the robot by twice as much as 

left/right shuffle, we kept the Heightmap aspect 

ratio at 2:1. 

 
7.2 Sensitivity Analysis 

The most important parameters for our algorithm 

are the Heightmap size on which the PCA is to be 

performed, the ranges of values around the current 

value of the robot’s orientation (θ), and the range 

of values around the current value of the robot’s 

distance from the nearest barrier.  

From the different test runs, the optimal values of 

image offset size were found to be 50 and 25 cm, 

the optimal range of theta was found to be 5 

degrees and the optimal range of distance from the 

barrier was found to be 10cm. The precision recall 

curve for these values is plotted in Figure 5. 

8 Evaluation 

There are two types of error measurement 

techniques that we employed. One is intrinsic 

evaluation, which we quantified by using precision 

and recall. The other, and the more pertinent one to 

the objective of the robot in question, is extrinsic 

evaluation. This is the fraction of times the robot 

successfully crosses the obstacle when starting at a 

random position on the terrain. 

We conducted Leave-one-out validation and 

obtained precision/recall values to check for 

accuracy in the predicted optimal motions.  We 

only tested on the gap terrain. 

8.1 Intrinsic Evaluation 

Using just the precision/recall, we get high values 

of Fmean for the special jump-gap motion (8 in Fig. 

5). This result is good because, as clarified earlier, it 

is costly for the robot to be wrong as concerns the 

jump motion.  

The precision and recall values for jump=barrier 

motion (7 in Fig. 5) were 0 as this motion was 

never labeled as an optimal motion in our training 

set of gap terrain Heightmaps. 

The precision values for left (5 in Fig. 5) and right 

rotation(6 in Fig. 5) are high (consistent with the 

desired levels), since they have significant rotation 

angles which could mean toppling over for 

positions near the edge. 

Since forward (1 in Fig. 5), backward (2 in Fig. 5), 

left shuffle (3 in Fig. 5) and right shuffle (4 in Fig. 5) 

motions do not require high precision and recall 

values because they have been labeled as the 

optimal next steps for positions of the robot 

following which it has little danger of toppling off 

the edges.  

8.2 Extrinsic Evaluation 

We defined the success rate as the number of times 

the robot actually overcomes the obstacle. Starting 

from random initial positions on the terrain, we 

found the success rate to be 60%.  

9 Error Analysis 



We noticed that, often, the robot tended to fall over 

the edge when its initial position was near the edge, 

or when a motion brought it near the edge.  This 

means that the sequence of operations to obtain 

the gradient of the Heightmap were not always 

useful in this case. Another feature that we need 

may need is the offset of the robot from the edges 

of the terrain. 

10 Directions for further work 

In essence, supervised learning and PCA will work 

well for familiar terrains. For terrains that have not 

previously been seen, reinforcement learning 

would be a good framework to integrate our 

approach with. 

Other work also involves improving upon the 

maneuver set currently developed, in terms of 

efficiency and parameters.  

Another possible direction is to base the robot’s 

assessment of its surrounding on data/images 

captured from a sensor/camera placed on the 

robot itself. This will enable motion planning from 

the perspective of the robot, and a global motion 

capture system would not be necessary.  We tried 

to best assess the implications of a robot-centric 

view by taking as small a Heightmap as possible, 

but much will depend upon what information the 

sensor provides.  
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Features used Heightmap Slice + 

Gradient + Gaussian 

Filtering(100X50) 

Heightmap Slice + 

Gradient + Gaussian 

Filtering (100X50) 

Heightmap Slice + 

Gradient + Gaussian 

Filtering (100X50) 

Pruning basis used  Orientation Range Orientation Range + 

Barrier Distance  

No of training examples 

chosen for PCA 

300 (all) 30-40 5-15 

Average Fscores for 

motion classes (1-7) 

0.2905 0.3395 0.3540 

Fscore for motion class 8 

(Jumping the Gap) 

0.6957 0.9474 0.9474 

Table 4: Comparison of results obtained using different pruning method for PCA selection 


