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Introduction 
Structural health monitoring (SHM) for civil engineering applications involves 

the use of sensing networks in order to diagnose damage in large scale civil structures 
such as buildings or bridges.  Health monitoring will result in large savings in 
maintenance costs as well as improving life safety by providing a real-time updating of a 
structure’s integrity.  Recent events such as the bridge collapse in Minneapolis as well as 
aging infrastructure illustrate the need to improve structural monitoring. 

Recent research has shifted towards using statistical algorithms and time series 
modeling to detect damage [1].  Statistical methods are advantageous, because they do 
not require the user to create a structural, usually finite element, model for the whole 
structure.  This results in significant savings in power consumption as well as data 
transmission, making them ideal for use in low power wireless networks.  Interest in 
using wireless networks for SHM has increased due to the lower cost and ease of 
installation [2]. 

Damage diagnosis is divided into three categories: damage identification, 
measurement of damage extent, and damage localization.  Extensive work has been done 
in the area of damage identification and localization.  In particular, Nair et al. (2006) 
show that an algorithm based on autoregressive time series modeling of a structure’s 
acceleration response to ambient vibrations is capable of detecting and measuring the 
extent of damage on a structure.  However, the damage localization problem remains 
unsolved.  Localization is important, because it will allow responders to streamline 
efforts in repair and maintenance.  

This paper examines the use of pattern classification techniques in machine 
learning to solve the damage localization problem.  Following, Nair et al. (2006), 
autoregressive coefficients from a structure’s acceleration response are selected as the 
feature vector.  Data is collected by simulation using the ASCE Phase I Benchmark 
Structure [3].  It is shown that using established pattern classification techniques, it is 
possible to localize damage in a structure.  Further work is shown in examining the 
optimal number of parameters and number of training examples for this problem. 
 
Time Series Modeling by Autoregressive Coefficients 

Nair et al. (2006) show that the autoregressive (AR) coefficients from a 
structure’s accelerations under ambient vibrations are directly related to the structure’s 
natural frequency and by extension its stiffness [1].  The autoregressive time series model 
can be represented as a linear difference equation with a transfer function, with the 
locations of the poles given by the AR coefficients; thus it follows that AR coefficient 
values will be a function of the structural stiffness.  Thus changes to a structure’s stiffness 
matrix as a result of permanent damage will change the structure’s AR coefficients.  For a 
more complete derivation of the AR algorithm, see Nair et al. (2006). 

The AR algorithm is performed according to the following steps as was 
previously done by Sohn et al. (2001) and Nair et al. (2006): 
 The acceleration time history is normalized and standardized according to the 
following equation: 
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where x(t) is the acceleration time history at a point t in time, μ and σ are the mean and 
standard deviation of the time history, and x ̃(t) is the normalized and standardized time 
history. 

Let xĩ(t) be the normalized and standardized acceleration signal from the ith sensor.  
In order to increase the number of features, x ̃i(t) is divided into N chunks.  Each chunk is 
an independent feature.  More specifically, Nair et al. (2006) show that if the acceleration 
time history can be shown to be stationary, then the acceleration signal of each chunk will 
be independent and identically distributed.   Although this has been done, it will not be 
shown here for brevity.  The AR model is given by the following equation: 
 

(2) 
 
where x̃̃ij(t) is the normalized acceleration signal of the jth chunk of the ith sensor, αijk is 
the kth AR coefficient from the jth chunk of the ith sensor, p is the AR model order, and 
εij(t) is the residual term.  The Burg algorithm (Brockwell and Davis, 2003) is used to 
estimate the AR coefficients.  In this study a model order of 5 and a chunk size of 4000 
are used.  The optimal AR order p and optimal chunk size N can be determined according 
to methods proposed by Nair et al. (2006).  Again for brevity, they will not be discussed. 
 
ASCE Phase I Benchmark Structure 

The ASCE Phase I Benchmark Structure is a standardized simulation problem for 
the development of structural health monitoring algorithms for civil structures.  The 
benchmark structure is a Matlab based simulation of a structure’s response to ambient 
vibrations.  Damage can be specified according to 6 predetermined damage patterns or 
user defined on any combination of beams, columns, and braces.  Output is given in the 
form of 16 acceleration time histories, representing acceleration from 8 different sensors 
in the x and y directions.  Extensive data can be gathered by specifying the random seed 
for force generation.  The model is based off of an existing structure which was 
constructed and tested at the University of British Columbia.  The structure is a two bay, 
four story, rectangular steel braced frame.  It is modeled as a 120 degree of freedom 
system with various loading options.  The Phase I Benchmark is chosen instead of a more 
recent benchmark, because the ability to assign user defined damage patterns is critical in 
order to build a suitable training and test data set required for the implementation of 
pattern classification algorithms.  
 
Pattern Classification 

Once the AR algorithm is performed on the acceleration time histories, the AR 
coefficients are assembled into a feature vector.  Previous work done by Nair et al. (2006) 
and confirmed by this study show that the first AR coefficient is sufficient to pick up 
changes in structural stiffness resulting from damage.  For this reason the feature vector 
X is chosen to be a vector of the first AR coefficient from all the sensors available. 
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where n is the number of sensors, and j is the index of the current chunk.  For the 
benchmark structure n = 16, representing 8 accelerometers each recording acceleration in 
the x and y directions.  The training set size m is equal to the number of chunks per run N 
multiplied by the number of runs.  A run is defined as one single output gathered from 
simulation by subjecting the structure to one ground motion and subjecting it to one 
damage case.   

Damage location is discretized according to the floor on which the damage has 
occurred.  This results in 5 possible classifications for damage location: undamaged, 1st 
floor, 2nd floor, 3rd floor, or 4th floor.  Thus this becomes a multi-category classification 
problem.  One way to solve this problem is to use binary classification methods and 
implement them in a “one-versus-all” (1va) or “one-versus-one” (1v1) approach (Duan et 
al. 2003).  

In this study two binary classification methods are used: regularized logistic 
regression using Newton’s method to solve the gradient ascent problem and support 
vector machines (SVM) using sequential minimal optimization (SMO) with a linear 
kernel.  The SMO algorithm is used as derived by Platt (1998).   

Gradient ascent attempts to maximize the following log-likelihood function: 
 

(4) 
 
where θMAP is the estimate of the model parameters, y(i) is the ith class label, either 0 or 1, 
x(i) is the ith feature vector, and hθ(x) is the signoid function given by: 
 

(5) 
 

λ||θ||2 is the Bayesian regularization term.  θ is assumed to be ~N(0, τ2I).   
 

(6) 
 
λ is chosen using cross-validation.  The log-likelihood function is maximized using the 
Newton-Raphson method. 
 

(7) 
The parameters θ are updated according to the previous equation until 

convergence has occurred or until some specified maximum number of iterations has 
taken place.  l is the log-likelihood function, H is the Hessian matrix of l with respect to θ 
and lθ∇  is the gradient of the log-likelihood function. 
 

SVM attempts to solve the Dual Problem.  The problem simplifies to a 
maximization problem given by the following expression: 
 

(8) 
 
such that: 
 

(9) 
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(10) 

 
This maximization problem is solved using SMO as derived by Platt (1998).  A 
description of that algorithm is beyond the scope of this paper.  For further details see 
Platt (1998). 

Both the 1va and 1v1 approach for multi-classification are used with a “winner-
takes-all” (WTA) and a “max-wins voting” (MWV) strategy (Duan et al. 2003).  In 
addition, each algorithm was performed with the dimension of the feature vector reduced 
using Principal Components Analysis (PCA).  The feature dimension n = 16 for the 
benchmark structure is manageable – 8 sensors measuring acceleration in the x and y 
directions.  However, for a larger structure such as a suspension bridge or skyscraper, n 
may grow into the thousands, especially if the z direction of acceleration is also 
considered.  PCA provides a way to make computations manageable.  For this study, the 
dimension of the feature vector was reduced to the first two principal components. 

The following damage patterns were introduced to the benchmark structure. 
 
Table 1 – Damage Patterns and Class Labels 
Damage Pattern Class Label 
Undamaged 1 
All 1st Floor Braces Damaged 2 
All 1st Floor Beams Damaged 2 
All 2nd Floor Braces Damaged 3 
All 2nd Floor Beams Damaged 3 
All 3rd Floor Braces Damaged 4 
All 3rd Floor Beams Damaged 4 
All 4th Floor Braces Damaged 5 
All 4th Floor Beams Damaged 5 
 
10 runs are generated for each damage state, each with different random seeds.  Each run 
is divided into 10 chunks according to the algorithm described above.  Therefore the size 
of the total data set m is 900.  Two damage states are considered – damage to beams and 
damage to braces – in order to determine the feasibility of localizing multiple types of 
damage even though the damage is labeled only according to location.  It was found in 
the analysis that the damage localization algorithm trained on brace damage data alone 
was incapable of localizing beam damage.  The data are labeled strictly according to 
which floor the damage took place on.   

All algorithms were trained on 70% of the data, with the other 30% reserved for 
testing.  The size of the training set is 630.  The size of the test set is 270.  Through cross 
validation, it was found that an optimal value of λ for gradient ascent is 0.01 and an 
optimal value of C for SVM is 50.  The results of each algorithm are compared in Table 2.  
Figure 1 shows the distribution of features when plotted according to their first two 
principal components.  A test cased was determined to be correctly assessed if the 
algorithm predicted the floor on which the damage occurred (or no damage).  An 
incorrect assessment was recorded as an error. 
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Table 2 – Test Error Results for Selected Algorithms 
 Gradient Ascent SMO 
1v1 MWV 2.2% 0.37% 
1va WTA 2.6% 0% 
1v1 MWV PCA 64.8% 49.6% 
1va WTA PCA 65.2% 62.6% 
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Figure 1 – Distribution of Features According to First Two Principal Components 
 

The pattern classification algorithms used are able to predict with high levels of 
accuracy the location of damage in the benchmark structure.  As expected, PCA increases 
the amount of test error, because information is lost.  Nevertheless, even with the 
dimensionality of the feature vector reduced to 2, the 1v1 SMO algorithm is able to 
predict with 50% accuracy the location of damage in the structure. 
 
Conclusion 

A pattern classification approach using supervised learning shows excellent 
results when tested on simulated data.  SVM-based multi-classifier algorithms are able to 
achieve almost 100% success rate in identifying the location of damage.  The advantage 
of this approach is that once a training data set has been built, testing is relatively simple 
and low in computational complexity.   

The problem with implementing this approach in practice to monitor existing 
structures is the lack of and difficulty in acquiring a large enough training set.  Because 
acquiring a training set experimentally would be prohibitively expensive, future research 
work should examine whether a training set created using simulated data can be used to 
predict the location of actual damage on an experimentally tested structure.  In addition to 
this, future research may consider less sever damage states, other types of damage, other 
ways of discretizing damage location, and whether training data for one type of structure 
can be applied successfully to similar structures.  However, despite the difficulties with 
applying this approach in practice, supervised learning approaches offer a great deal of 
potential in solving the damage localization problem.  
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