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Training, true vs. model complexity
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Overfitting of

polynomial regression




Flexibility of high-order polynomials
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Symptom of overfitting

Often, overfitting associated with very
large estimated parameters w
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Polynomial fit example
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wo = 0.00142109 wl

-0.0412048 w2 = 0.402433

w0 = -3.33355e-09 wl = 3.24407e-07 w2 = -1.3957e-05 w3 = 0.000351859 w4 = -0.00580734
W5 = 0.0664276 w6 = -0.543967 w7 = 3.24647 w8 = -14.1922 w9 = 44,8987 wl0 = -98.886
w3 = -1.45804 w4 = 1.16305 w5 = 2.32569
wll = 139.912 wl2 = -109.084 wl3 = 32.5699 wl4 = 2.62986
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How does # of observations influence overfitting?

Few observations (N small)
- rapidly overfit as model complexity increases

Many observations (N very large)
- harder to overfit
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Overfitting of linear regression

models more generically
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Overfitting with many features

Not unique to polynomial regression,

but also if lots of inputs (d large)
- Square feet

- # bathrooms
- # bedrooms
D - Lot size
y=>_ wh(x+e - Year built

3=0

Or, generically,
lots of features (D large)



How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

Data must include representative examples of
all possible (sqg.ft., S) pairs to avoid overfitting
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How does # of inputs influence overfitting?

d inputs (e.qg., sq.ft.,, #bath, #bed, lot size, year,...):

Data must include examples of all possible

(sq.ft., #bath, #bed, lot size, year,...., S) combos
to avoid overfitting

>
square feet (sq.ft.) x[1]
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Regularization:
Adding term to cost-of-fit

to prefer small coefficients
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Desired total cost format

Want to balance:
. How well function fits data
Ii. Magnitude of coefficients

Total cost =

measure of fit + measure of magnitude of coefficients
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Measure of fit to training data
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price (S)
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Measure of magnitude of regression coefficient

What summary # is indicative of size of
regression coefficients?

— Sum?
— Sum of absolute value?

— Sum of squares (L, norm)
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients
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Ridge Regression (aka L, regularization)

What if w selected to minimize
RSS(w) +\ ||w||§
If A=0:

If A=oo:

If A in between:
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Bias-variance tradeoff

Large A:
bias,
(e.g., W =0 for A=e9)

Small A:
bias,

(e.g., standard least squares (RSS) fit of
high-order polynomial for A=0)
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Coefficient path
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How to choose A
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The regression/ML workflow

1. Model selection

Need to choose tuning parameters A controlling
model complexity

2. Model assessment
Having selected a model, assess generalization error
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Hypothetical implementation 1

Training set Test set

1. Model selection

For each considered A :

I.  Estimate parameters W, on training data

. Assess performance of W, on training data
iii. Choose A" to be A with lowest train error

2. Model assessment

Compute test error of W, (fitted model for selected A\)
to approx. true error

©2022 Carlos Guestrin

CS229: Machine Learning



24

Hypothetical implementation 1

Training set Test set

Issue: Both A and W selected on training data then A" = 0

* N was selected to minimize training error (i.e., A" was fit on
training data)

* Most complex model will have lowest training error
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Hypothetical implementation 2

Training set Test set

1. Model selection

For each considered A :

I.  Estimate parameters W, on training data
. Assess performance of W, on test data
iiil. Choose A" to be A with lowest test error

2. Model assessment

Compute test error of W, (fitted model for selected A\)
to approx. true error
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Hypothetical implementation 2

Training set Test set

Issue: Just like fitting W and assessing its performance
both on training data
« A" was selected to minimize test error (i.e., A" was fit on test data)

* |f test data is not representative of the whole world, then W
will typically perform worse than test error indicates
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Practical implementation

Validation Test
set set

Training set

Solution: Create two “test” sets!

1. Select A" such that Wy- minimizes error on validation set
2. Approximate true error of W, using test set
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Practical implementation

Validation Test
set set

A A
it i T
test performance

of W, to select A
assess true

Training set

error of Wi«
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Feature normalization




Normalizing features

Scale training columns (not rows!) as:

hj( ) Normalizer: -Fr'

D Q)
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Apply same training scale factors to test data:

hj( ) = hj(—) Norrnzélizer; Lr

Q)
=

apply to \/ZhJ( ) \ summing over training points Afe

test point




Summary for

ridge regression
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What you can do now...

Describe what happens to magnitude of estimated coefficients when
model is overfit

Motivate form of ridge regression cost function

Describe what happens to estimated coefficients of ridge regression as
tuning parameter A\ is varied

Interpret coefficient path plot
Use a validation set to select the ridge regression tuning parameter A
Handle intercept and scale of features with care

©2022 Carlos Guestrin CS229: Machine Learning



