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Ridge Regression:
Regulating overfitting when 
using many features
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Training, true vs. model complexity
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Overfitting of 
polynomial regression
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Flexibility of high-order polynomials
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Symptom of overfitting

Often, overfitting associated with very
large estimated parameters ŵ
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Polynomial fit example
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How does # of observations influence overfitting?

Few observations (N small) 
à rapidly overfit as model complexity increases

Many observations (N very large) 
à harder to overfit
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Overfitting of linear regression
models more generically
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Overfitting with many features

Not unique to polynomial regression,
but also if lots of inputs (d large)

Or, generically, 
lots of features (D large)

y =      wj hj(x) + ε
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DX

j=0

- Square feet

-# bathrooms

-# bedrooms

- Lot size

- Year built

- …
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How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):
Data must include representative examples of 
all possible (sq.ft., $) pairs to avoid overfitting
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How does # of inputs influence overfitting?

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,…):

Data must include examples of all possible
(sq.ft., #bath, #bed, lot size, year,…., $) combos
to avoid overfitting
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Regularization:
Adding term to cost-of-fit
to prefer small coefficients
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Desired total cost format

Want to balance:

i. How well function fits data

ii. Magnitude of coefficients

Total cost =

measure of fit + measure of magnitude of coefficients
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Measure of fit to training data
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RSS(w) =      (yi-h(xi)Tw)2
NX

i=1
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What summary # is indicative of size of 
regression coefficients?

- Sum?  

- Sum of absolute value?

- Sum of squares (L2 norm)
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Measure of magnitude of regression coefficient
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients
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Ridge Regression (aka L2 regularization)

What if ŵ selected to minimize

If λ=0:

If λ=∞: 

If λ in between: 

RSS(w) + ||w||2
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Bias-variance tradeoff

Large λ:

bias, variance

(e.g., ŵ =0 for λ=∞) 

Small λ:

bias, variance

(e.g., standard least squares (RSS) fit of
high-order polynomial for λ=0)
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How to choose λ
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The regression/ML workflow

1. Model selection
Need to choose tuning parameters λ controlling 
model complexity

2. Model assessment
Having selected a model, assess generalization error
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Hypothetical implementation 1

1. Model selection
For each considered λ :
i. Estimate parameters ŵλ on training data
ii. Assess performance of ŵλ on training data
iii. Choose λ* to be λ with lowest train error

2. Model assessment
Compute test error of ŵλ* (fitted model for selected λ*) 
to approx. true error

©2022 Carlos Guestrin

Training set Test set
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Hypothetical implementation 1
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Issue: Both λ and ŵ selected on training data then λ* = 0
• λ* was selected to minimize training error (i.e., λ* was fit on 

training data)

• Most complex model will have lowest training error

Training set Test set
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Hypothetical implementation 2 

1. Model selection
For each considered λ :
i. Estimate parameters ŵλ on training data
ii. Assess performance of ŵλ on test data
iii. Choose λ* to be λ with lowest test error

2. Model assessment
Compute test error of ŵλ* (fitted model for selected λ*) 
to approx. true error
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Training set Test set
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Hypothetical implementation 2 
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Issue: Just like fitting ŵ and assessing its performance 
both on training data 
• λ* was selected to minimize test error (i.e., λ* was fit on test data)

• If test data is not representative of the whole world, then ŵλ* 
will typically perform worse than test error indicates

Training set Test set
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Training set Test set

Practical implementation
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Solution: Create two “test” sets!

1. Select λ* such that ŵλ* minimizes error on validation set

2. Approximate true error of ŵλ* using test set

Validation 
set

Training set
Test 
set
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Practical implementation
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Validation 
set

Training set
Test 
set

fit ŵλ
test performance 
of ŵλ to select λ*

assess true 
error of ŵλ*
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Feature normalization
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PRACTICALITIES
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p

Normalizing features

Scale training columns (not rows!) as:

Apply same training scale factors to test data:  
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hj(xk) = 
hj(xk)

hj(xi)2
NX

i=1
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apply to 

test point
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Summary for 
ridge regression
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What you can do now…
• Describe what happens to magnitude of estimated coefficients when 

model is overfit

• Motivate form of ridge regression cost function

• Describe what happens to estimated coefficients of ridge regression as 
tuning parameter λ is varied

• Interpret coefficient path plot

• Use a validation set to select the ridge regression tuning parameter λ
• Handle intercept and scale of features with care
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