Ridge Regression:
Regulating overfitting when
using many features

CS229: Machine Learning

Carlos Guestrin
Stanford University

Slides include content developed by and co-developed with
Emily Fox




Training, true vs. model complexity

Error

A
=

7

at

7 y[ Model complexity y
o“uu v

X ©2022 Carlos Guestrin CS229: Machine “2arnin




Overfitting of

polynomial regression




Flexibility of high-order polynomials
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Symptom of overfitting

Often, overfitting associated with very
large estimated parameters w U
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Polynomial fit example
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How does # of observations influence overfitting?

Few observations (N small)
- rapidly overfit as model complexity increases

Many observations (N very large)
- harder to overfit
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Overfitting of linear regression

models more generically
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Overfitting with many features

Not unigue to polynomial regression,

but also if lots of inputs (d large)
- Square feet

- # bathrooms
- # bedrooms
D - Lot size
y=>_ wh(x+e - Year built

3=0

Or, generically,
lots of features (D large)



How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

Data must include representative examples of
all possible (sqg.ft., S) pairs to avoid overfitting
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How does # of inputs influence overfitting?

d inputs (e.qg., sq.ft.,, #bath, #bed, lot size, year,...):

Data must include examples of all possible

(sq.ft., #bath, #bed, lot size, year,...., S) combos
to avoid overfitting

square feet (sqg.ft.)
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Regularization:
Adding term to cost-of-fit

to prefer small coefficients
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Desired total cost format

Want to balance:
. How well function fits data
li. Magnitude of coefficients

Total cost =
measure of fit + measure of magnitude of coefficients
-
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Measure of fit to training data
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Measure of magnitude of regression coefficient

What summary # is indicative of size of
regression coefficients?
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients
088 (W) 4 N[ Wik
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Ridge Regression (aka L, regularization)
What if W selected to minimize
RSS(w) A\ |lwll5
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Bias-variance tradeoff

Large A:
Nigh biasow variance
(e.g., W =0 for A=oo)

Small A:
[vws bias, Ny, variance

(e.g., standard least squares (RSS) fit of
high-order polynomial for A=0)
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Coefficient path
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How to choose A
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The regression/ML workflow

1. Model selection

Need to choose tuning parameters A controlling
model complexity “

C%ox
2. Model assessment /

Having selected a model, assess generalization error
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Hypothetical implementation 1

Training set Test set

1. Model selection

For each considered A :

I.  Estimate parameters W, on training data

. Assess performance of W, on training data
iii. Choose A" to be A with lowest train error

2. Model assessment

Compute test error of W, (fitted model for selected A\)
to approx. true error
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Hypothetical implementation 1

Training set Test set

Issue: Both A and W selected on training data then A" = 0

* N was selected to minimize training error (i.e., A" was fit on
training data)

* Most complex model will have lowest training error
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Hypothetical implementation 2

Training set Test set

1. Model selection

For each considered A :

I.  Estimate parameters W, on training data
. Assess performance of W, on test data
iiil. Choose A" to be A with lowest test error

2. Model assessment

Compute test error of W, (fitted model for selected A\)
to approx. true error
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Hypothetical implementation 2

Tralning set Test set

Issue: Just like fitting W and assessing its performance
both on training data
« A" was selected to minimize test error (i.e., A" was fit on test data)

* |f test data is not representative of the whole world, then W
will typically perform worse than test error indicates
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Practical implementation

Validation Test
set set

Training set

Solution: Create two “test” sets!

1. Select A" such that Wy- minimizes error on validation set
2. Approximate true error of W, using test set
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Practical implementation

Validation Test
set set

ity T

test performance
of Wy, to select A°
assess true

Training set

error of Wi«
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Feature normalization
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Normalizing features

Scale training columns (not rows!) as:

hJ( ) Normalizer:

hj( )=N—/ Z
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Apply same training scale factors to test data:

h( ) Normalizer:
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Summary for

ridge regression
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What you can do now...

« Describe what happens to magnitude of estimated coefficients when
model is overfit

* Motivate form of ridge regression cost function

« Describe what happens to estimated coefficients of ridge regression as
tuning parameter A\ is varied

* Interpret coefficient path plot
« Use a validation set to select the ridge regression tuning parameter A
« Handle intercept and scale of features with care
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