Ridge Regression:

Regulating overfitting when using many features

CS229: Machine Learning Carlos Guestrin Stanford University Slides include content developed by and co-developed with Emily Fox

2022 Carlos Guestrin

Training, true vs. model complexity

2

Overfitting of polynomial regression

©2022 Carlos Guestrir

Flexibility of high-order polynomials

Symptom of overfitting

Polynomial fit example

CS229: Machine Learning

©2022 Carlos Guestrin

How does # of observations influence overfitting?

Few observations (N small)

ightarrow rapidly overfit as model complexity increases

Many observations (N very large)

 \rightarrow harder to overfit

Overfitting of linear regression models more generically

©2022 Carlos Guestrin

Overfitting with many features

Not unique to polynomial regression, but also if **lots of inputs** (d large)

Or, generically, lots of features (D large) $y = \sum_{j=0}^{D} w_j h_j(x) + \varepsilon$

- Square feet
- # bathrooms
- # bedrooms
- Lot size

— ...

– Year built

How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

Data must include representative examples of all possible (sq.ft., \$) pairs to avoid overfitting

How does # of inputs influence overfitting?

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,...):

Data must include examples of all possible (sq.ft., #bath, #bed, lot size, year,..., \$) combos to avoid overfitting

Regularization: Adding term to cost-of-fit to prefer small coefficients

Desired total cost format

Want to balance:

- How well function fits data İ.
- Magnitude of coefficients 11.

Total cost =

measure of fit + measure of magnitude of coefficients Plnalty for large parameter values force me to find simpler models l.g., RSS

©2022 Carlos Guestrin

Measure of fit to training data

©2022 Carlos Guestrin

Measure of magnitude of regression coefficient

What summary # is indicative of size of regression coefficients? typically (negative w) bad ideal i

- Sum? Wotwitwat--
- Sum of absolute value? $\|v_0\| \neq \|w_0\| \neq \|w_0\| \neq \|w_0\| = (Lasso)$
- Sum of squares (L_2 norm)

$$\|W\|_{2}^{2} = W_{0}^{2} + W_{1}^{2} + W_{2}^{2} + \cdots$$

(ridge regressia)

CS229: Machine Learning

Consider specific total cost

Total cost = measure of fit + measure of magnitude of coefficients $f(w) + \chi = \|w\|_2^2$ $f(w)\|_2^2$ $f(w) = \int_{-\infty}^{\infty} magic f(w) dw$

CS229: Machine Learning

Ridge Regression (aka L₂ regularization)

What if ŵ selected to minimize

$RSS(w) + \lambda ||w||_2^2$

If $\lambda = 0$: writing $= w_{RSS}$

If λ in between: $\|\hat{w}_{ridge}\|_{2}^{2} < \|w_{rss}\|_{2}^{2}$

Bias-variance tradeoff

Large λ : high bias low variance (e.g., $\hat{\mathbf{w}} = 0$ for $\lambda = \infty$)

Small λ :

(e.g., standard least squares (RSS) fit of high-order polynomial for $\lambda=0$)

Coefficient path

©2022 Carlos Guestrin

How to choose λ

©2022 Carlos Guestrir

The regression/ML workflow

1. Model selection

Need to choose tuning parameters λ controlling model complexity *Chook* δ

2. Model assessment 🖉

Having selected a model, assess generalization error

1. Model selection

For each considered λ :

- i. Estimate parameters \hat{w}_{λ} on training data
- ii. Assess performance of \hat{w}_{λ} on training data
- iii. Choose λ^* to be λ with lowest train error

2. Model assessment

Compute test error of \hat{w}_{λ^*} (fitted model for selected λ^*) to approx. true error

Issue: Both λ and \hat{w} selected on training data then $\lambda^* = 0$

- λ^* was selected to minimize training error (i.e., λ^* was fit on training data)
- Most complex model will have lowest training error

1. Model selection

For each considered λ :

- i. Estimate parameters \hat{w}_{λ} on training data
- ii. Assess performance of \hat{w}_{λ} on test data
- iii. Choose λ^* to be λ with lowest test error

2. Model assessment

Compute test error of \hat{w}_{λ^*} (fitted model for selected λ^*) to approx. true error

Issue: Just like fitting $\hat{\mathbf{w}}$ and assessing its performance both on training data

- λ^* was selected to minimize test error (i.e., λ^* was fit on test data)
- If test data is not representative of the whole world, then \hat{w}_{λ^*} will typically perform worse than test error indicates

Practical implementation

Training set	Validation	Test
	set	set

Solution: Create two "test" sets!

- 1. Select λ^* such that \hat{w}_{λ^*} minimizes error on validation set
- 2. Approximate true error of \hat{w}_{λ^*} using test set

Practical implementation

Feature normalization

©2022 Carlos Guestrin

Normalizing features

Scale training columns (not rows!) as:

Apply same training scale factors to test data:

©2022 Carlos Guestrin

raini

eatures

40° 40° 40° ...

Summary for ridge regression

©2022 Carlos Guestrir

What you can do now...

- Describe what happens to magnitude of estimated coefficients when model is overfit
- Motivate form of ridge regression cost function
- Describe what happens to estimated coefficients of ridge regression as tuning parameter λ is varied
- Interpret coefficient path plot
- Use a validation set to select the ridge regression tuning parameter $\boldsymbol{\lambda}$
- Handle intercept and scale of features with care