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Privacy Definition (dictionary.com)

2. the state of being free from unwanted or undue 
intrusion or disturbance in one's private life or affairs; 
freedom to be let alone.

3. freedom from damaging publicity, public scrutiny, 
secret surveillance, or unauthorized disclosure of one’s 
personal data or information, as by a government, 
corporation, or individual.
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Privacy vs Security

• Privacy is about your control of your personal 
information (and how it’s used)

• Security is about protection against unauthorized 
access
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Utility-Privacy Tradeoff 
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Privacy by Anonymization

• A trusted curator removes personally-identifying 
information (name, SSN,…)
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Linkage Attack

• Group Insurance Commission (GIC) 
- Anonymized data for ~135k patients for researchers and policy-

makers
• Including ZIP, birthdate and sex
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Linkage Attack

• Group Insurance Commission (GIC) 
- Anonymized data for ~135k patients for researchers and policy-

makers
• Including ZIP, birthdate and sex

• Voter registration records
-Name, …, ZIP, birthdate, sex

• Uncovered health records, e.g., of William Weld (governor 
of Massachusetts at that time)
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Netflix Prize Linkage Attack
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100 million movie ratings 
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Privacy by Aggregation

• Common approach: aggregate counts, averages, 
trained models are private?
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Genome Wide Association Studies (GWAS) with  
single-nucleotide polymorphisms (SNPs):  
Membership Attack

• Able to infer if an individual’s DNA is part of study
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Generative Model Inversion Attack
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[Zhang et al 2020]
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Randomized Response 
[Warner 1965]
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Randomized Response: Intuition

• Add noise to each data point, e.g., estimate average 
salary
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Differential Privacy
[Dwork et al. 2006]
(Dwork and Roth 2014 Book is great 
reference: https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf)
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Formal Framework for Privacy 

• Provide provable privacy-preserving guarantees 

• Develop efficient methods to add noise and learn from 
data
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Global Differential Privacy Framework

• You participate in “study”
- i.e., provide data to trusted party

• Trusted party performs computations on data, but 
reveals answers that (attempt to) preserve privacy

• Goal: Provide provable privacy-preserving guarantees 
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Differential Privacy Setup

• Database 𝐷 includes sensitive information

• Data analyst asks queries on 𝐷
• (Randomized) Mechanism 𝑀 attempts to get response 𝑅 to 

query, while attempting to avoid leaking of individual 
information
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Differential Privacy: Neighboring Databases

• Neighboring databases: two databases 𝐷! and 𝐷" only 
differ in a single entry  
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Differential Privacy Definition

• Neighboring databases: two databases 𝐷! and 𝐷" only 
differ in a single entry  

• A mechanism 𝑀 is ε-differentially private if, for any two 
neighboring databases, and any set 𝑅 of possible 
responses:

• Note: Differential Privacy is a definition, not algorithm to achieve it
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Differential Privacy Intuition
• You can’t tell if it’s me or someone else in the database
- You can’t tell if I was part of the study
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Laplace Mechanism
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Laplace Mechanism

• Add Laplace noise to the response

• How much noise to add?
-Depends on magnitude of results

- Suppose want to compute function 𝑓 on database 𝐷, 
sensitivity of 𝑓:

• To achieve ε-differential privacy, noise level is:  
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Laplace Mechanism Example: Counts
• Suppose you want to count how many people have 

salary>$500k & got an A in CS281
- 𝑓 is count function

• Sensitivity of 𝑓:

• To achieve ε-differential privacy, noise level is:  
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Proof for 1D Laplace Mechanism
• Neighboring databases 𝐷! and 𝐷"
• Mechanism 𝑀 to compute 𝑓 returns:

• Achieving 𝜀-differential privacy:
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Practical Examples of Differential Privacy
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Practical Applications of Differential Privacy
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Summary 

• As we develop ML-based systems, it’s important to 
consider privacy at every stage of the process

• Many methods and tools can help

• Ultimately, must manage the utility-privacy tradeoff 
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Closing a busy quarter… 
J
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You did amazing things… 

• Huge number of topics

• Remote learning

• Challenging homeworks and midterm

• Amazing project

• …
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This is just the start…

• You now have the skills to have real-world impact with 
ML

• But, machines are not the only ones who keep 
learning… J
-CS229 prepares you for many other classes at Stanford

- And beyond

• We can’t wait to see the amazing things you come up 
with!
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Thank you to the amazing course staff!!!!!!!!
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Thank you!!!!!!!!! J


