Al Ethics: Privacy & Machine Learning

CS229: Machine Learning Carlos Guestrin Stanford University

©2022 Carlos Guestrir

Privacy Definition (dictionary.com)

2. the state of being free from unwanted or undue intrusion or disturbance in one's private life or affairs; freedom to be let alone.

3. freedom from damaging publicity, public scrutiny, secret surveillance, or unauthorized disclosure of one's personal data or information, as by a government, corporation, or individual.

Privacy vs Security

- Privacy is about your control of your personal information (and how it's used)
- Security is about protection against unauthorized access

Utility-Privacy Tradeoff

Privacy by Anonymization

• A trusted curator removes personally-identifying information (name, SSN,...)

Linkage Attack [Sweeney '00]

- Group Insurance Commission (GIC)
 - Anonymized data for ~135k patients for researchers and policymakers
 - Including ZIP, birthdate and sex

Linkage Attack [Sweeney '00]

- Group Insurance Commission (GIC)
 - Anonymized data for ~135k patients for researchers and policymakers
 - Including ZIP, birthdate and sex
- Voter registration records
 - Name, ..., ZIP, birthdate, sex
- Uncovered health records, e.g., of William Weld (governor of Massachusetts at that time)

Netflix Prize Linkage Attack

Netflix Prize 2006

©2022 Carlos Guestrin

Privacy by Aggregation

 Common approach: aggregate counts, averages, trained models are private?

Genome Wide Association Studies (GWAS) with single-nucleotide polymorphisms (SNPs): Membership Attack

Kidney stone DGKH disease SLC34A1 CLDN14 CYP24A1 g10 P-value GCKR SI C22A 14 DGKD ALPL KCNK5 WDR7 POU2AF1 4 5 6 10 11 12 13 14 15 16 17 18 1920 21 22 2 3 7 8 9 Chromosome

• Able to infer if an individual's DNA is part of study

©2022 Carlos Guestrin

Generative Model Inversion Attack [Zhang et al 2020]

Target Masked

GMI

©2022 Carlos Guestrin

Randomized Response [Warner 1965]

©2022 Carlos Guestrir

Randomized Response: Intuition

Add noise to each data point, e.g., estimate average salary

Differential Privacy [Dwork et al. 2006] (Dwork and Roth 2014 Book is great reference: https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf)

Formal Framework for Privacy

Provide provable privacy-preserving guarantees

 Develop efficient methods to add noise and learn from data

Global Differential Privacy Framework

- You participate in "study"
 - i.e., provide data to trusted party
- Trusted party performs computations on data, but reveals answers that (attempt to) preserve privacy

Goal: Provide provable privacy-preserving guarantees

Differential Privacy Setup

- Database *D* includes sensitive information
- Data analyst asks queries on D
- (Randomized) Mechanism *M* attempts to get response *R* to query, while attempting to avoid leaking of individual information

Differential Privacy: Neighboring Databases

• Neighboring databases: two databases D_1 and D_2 only differ in a single entry

Differential Privacy Definition [Dwork et al. '06]

- Neighboring databases: two databases D_1 and D_2 only differ in a single entry
- A mechanism M is ε-differentially private if, for any two neighboring databases, and any set R of possible responses:

• Note: Differential Privacy is a definition, not algorithm to achieve it

©2022 Carlos Guestrin

Differential Privacy Intuition

You can't tell if it's me or someone else in the database
You can't tell if I was part of the study

Laplace Mechanism

©2022 Carlos Guestrin

Laplace Mechanism

- Add Laplace noise to the response
- How much noise to add?
 - Depends on magnitude of results
 - Suppose want to compute function f on database D, sensitivity of f:
- *To achieve* ε-differential privacy, noise level is:

Laplace Mechanism Example: Counts

- Suppose you want to count how many people have salary>\$500k & got an A in CS281
 - -f is count function
- Sensitivity of *f*:

• *To achieve* ε-differential privacy, noise level is:

Proof for 1D Laplace Mechanism $p(w) = \frac{1}{b} \exp\left(-\frac{|w|}{b}\right)$

- Neighboring databases D_1 and D_2
- Mechanism M to compute f returns: •
- Achieving ε -differential privacy:

Practical Examples of Differential Privacy

©2022 Carlos Guestrin

Practical Applications of Differential Privacy

©2022 Carlos Guestrin

Summary

- As we develop ML-based systems, it's important to consider privacy at every stage of the process
- Many methods and tools can help
- Ultimately, must manage the utility-privacy tradeoff

Closing a busy quarter...

©2022 Carlos Guestrir

You did amazing things...

- Huge number of topics
- Remote learning
- Challenging homeworks and midterm
- Amazing project
- ...

This is just the start...

- You now have the skills to have real-world impact with ML
- But, machines are not the only ones who keep learning... [©]
 - CS229 prepares you for many other classes at Stanford
 - And beyond
- We can't wait to see the amazing things you come up with!

Thank you to the amazing course staff!!!!!!!

Swati Dube **Head Course Assistant**

Nandita Bhaskhar

Kyu-Young

Kim

Course Assistants

Beri Kohen Behar

Griffin Young Sauren Khosla

Zhangjie Cao David Lim

Emmanuel Jake Silberg Balogun

Ha Tran

©2022 Carlos Guestrin

Thank you!!!!!!!! ③