Al Ethics: Privacy & Machine Learning

CS229: Machine Learning Carlos Guestrin Stanford University

©2022 Carlos Guestrin

Privacy Definition (dictionary.com)

- 2. the state of being free from unwanted or undue intrusion or disturbance in one's private life or affairs; freedom to be let alone.
- 3. freedom from damaging publicity, public scrutiny, secret surveillance, or unauthorized disclosure of one's personal data or information, as by a government, corporation, or individual.

Privacy vs Security

- Privacy is about your control of your personal information (and how it's used)
- Security is about protection against unauthorized

Utility-Privacy Tradeoff

Can De provide a fility.

All

frinaces

frain an MC athlity

company A

company A

company A

company A

company B

comp

Privacy by Anonymization

 A trusted curator removes personally-identifying information (name, SSN,...)

Linkage Attack [Sweeney '00]

- Group Insurance Commission (GIC)
 - Anonymized data for ~135k patients for researchers and policy-makers

Linkage Attack [Sweeney '00]

- Group Insurance Commission (GIC)
 - Anonymized data for ~135k patients for researchers and policymakers
 - Including ZIP, birthdate and sex
- Voter registration records
 - Name, ..., ZIP, birthdate, sex
- Uncovered health records, e.g., of William Weld (governor of Massachusetts at that time)

Netflix Prize Linkage Attack

Privacy by Aggregation

 Common approach: aggregate counts, averages, trained models are private?

Genome Wide Association Studies (GWAS) with single-nucleotide polymorphisms (SNPs): Membership Attack

Able to infer if an individual's DNA is part of study

Generative Model Inversion Attack [Zhang et al 2020]

Target Masked GMI

Randomized Response [Warner 1965]

Randomized Response: Intuition

Migh variance of its large

• Add noise to each data point a continuation

high noise

was a liste

but noise. • Add noise to each data point, e.g., estimate average is priver

CS229: Machine Learning

Differential Privacy [Dwork et al. 2006] (Dwork and Roth 2014 Book is great

reference: https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

Formal Framework for Privacy

Provide provable privacy-preserving guarantees

Develop efficient methods to add noise and learn from data

Global Differential Privacy Framework

- You participate in "study"
 - i.e., provide data to trusted party
- Trusted party performs computations on data, but reveals answers that (attempt to) preserve privacy

a Compute a Statistics a

Goal: Provide provable privacy-preserving guarantees

Differential Privacy Setup

- Database D includes sensitive information
- Data analyst asks queries on D
- (Randomized) Mechanism M attempts to get response R to query, while attempting to avoid leaking of individual information

Differential Privacy: Neighboring Databases

• Neighboring databases: two databases D_1 and D_2 only differ in a single entry D_1 and D_2 only D_2

 $M(D_1) = Q(D_1) + W_1$ $M(D_2) = Q(D_2) + W_2$ $M(D_2) = Q(D_2) + W_2$ $M(D_3) = Q(D_3) + W_3$ $M(D_4) = Q(D_2) + W_3$ $M(D_4) = Q(D_4) + W_4$ $M(D_4) = Q(D_4) + W$

Differential Privacy Definition [Dwork et al. '06]

• Neighboring databases: two databases D_1 and D_2 only differ in a single entry

• A mechanism M is ε -differentially private if, for any two neighboring databases, and any set R of possible

Note: Differential Privacy is a definition, not algorithm to achieve it

Differential Privacy Intuition

- You can't tell if it's me or someone else in the database
 - You can't tell if I was part of the study

$$e^{-\varepsilon} \leq \frac{P(M(D_i) \in R)}{P(M(D_i) \in R)} \leq e^{\varepsilon}$$

$$for small \quad \varepsilon, \quad e^{\varepsilon} \approx 1 + \varepsilon$$

$$= \frac{P(M(D_i) \in R)}{P(M(D_i) \in R)} \leq 1 + \varepsilon$$

$$= \frac{P(M(D_i) \in R)}{P(M(D_i) \in R)} \leq 1 + \varepsilon$$

$$= \frac{P(M(D_i) \in R)}{P(M(D_i) \in R)}$$

Laplace Mechanism

Laplace Mechanism

query: (Jant (Ain CSZ29), return Count +

Depends on magnitude of results

- Suppose want to compute function f on database D_{λ} sensitivity of frax $|f(D_1) - f(D_2)||_1$

Laplace Mechanism Example: Counts

- Suppose you want to count how many people have salary>\$500k& got and in CS281
 - f is count function
- Sensitivity of f:

To achieve ε-differential privacy, noise level is:

Laplace (d, /E)

Proof for 1D Laplace Mechanism $p(w) = \frac{1}{b} \exp\left(-\frac{|w|}{b}\right)$

- Neighboring databases D_1 and D_2
- Mechanism M to compute f returns:
- Achieving ε -differential privacy:

Practical Applications of Differential Privacy

Summary

- As we develop ML-based systems, it's important to consider privacy at every stage of the process
- Many methods and tools can help
- Ultimately, must manage the utility-privacy tradeoff

Closing a busy quarter...

You did amazing things...

- Huge number of topics
- Remote learning
- Challenging homeworks and midterm
- Amazing project

•

This is just the start...

- You now have the skills to have real-world impact with ML
- But, machines are not the only ones who keep learning... ☺
 - CS229 prepares you for many other classes at Stanford
 - And beyond
- We can't wait to see the amazing things you come up with!

Thank you to the amazing course staff!!!!!!!!

Swati Dube

Head Course Assistant

Bhaskhar

Course Assistants

Beri Kohen Behar

Griffin Young Sauren Khosla

Zhangjie Cao

David Lim

Soyeon Jung

Balogun

Jake Silberg

Ha Tran

Thank you!!!!!!! ©