Dimensionality Reduction Principal Component Analysis (PCA)

CS229: Machine Learning Carlos Guestrin Stanford University Slides include content developed by and co-developed with Emily Fox

©2022 Carlos Guestrin

Embedding Example: Embedding images to visualize data

Embedding words

[Joseph Turian 2008]

3

©2022 Carlos Guestrin

CS229: Machine Learning

10,000 word dictions

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., text data
- **Dimensionality reduction**: represent data with fewer dimensions
 - easier learning fewer parameters
 - visualization hard to visualize more than 3D or 4D
 - discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

Lower dimensional projections $d \neq k$

• Rather than picking a subset of the features, we can create new features that are combinations of existing features \mathcal{PCA} : linear projections : $\mathcal{Z}_1 = 2.5 \mathcal{X}_1 - 3.2 \mathcal{X}_2 \pm 3.7 \mathcal{X}_3$

Let's see this in the unsupervised setting Z = A
 just x, but no y
 Projection

learn K reconstruct da

ž close to z

Linear projection and reconstruction

Principal component analysis (PCA) – Basic idea

- Project d-dimensional data into k-dimensional space while preserving as much information as possible:
 - e.g., project space of 10000 words into 3-dimensions
 - e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error

"PCA explained visually"

http://setosa.io/ev/principal-component-analysis/

11

PCA finds projection that minimizes

Reconstruction error and covariance matrix

$$\sum_{i=1}^{N} \sum_{j=k+1}^{d} [\mathbf{u}_{j} \cdot (\mathbf{x}^{i} - \bar{\mathbf{x}})]^{2}$$

$$= \sum_{i=1}^{N} \sum_{j=k+1}^{d} [\mathbf{u}_{j} \cdot (\mathbf{x}^{i} - \bar{\mathbf{x}})]^{2}$$

$$= \sum_{i=1}^{N} \sum_{j=k+1}^{n} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{i=1}^{n} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{i=1}^{n} \sum_{j=k+1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{i=1}^{n} \sum_{j=k+1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{n} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{n} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T} u_{j}$$

$$\sum_{j=k+1}^{N} u_{j}^{T} \sum_{i=1}^{N} u_{j}^{T} u_{j}^{T}$$

Minimizing reconstruction error and eigen vectors

- Minimizing reconstruction error equivalent to picking orthonormal basis (u₁,...,u_d) minimizing u_j is an eigen vector.
 error_k = N ∑ u_j^d u_j^TΣu_j
 Eigen vector: U_{j=k+1}
 Memory Zu = A U Vector
 eigen Value
 = λ_j U_j U_j
 = λ_j U_j U_j
 = λ_j U_j U_j
 = λ_j U_j U_j
 - Minimizing reconstruction error equivalent to picking (u_{k+1},...,u_d) to be eigen vectors with smallest eigen values

Min Rever Z throwing Out Uation add Ui-Uk Z with smallest eight values of Z Z keeping Ui, ... Uk with highest eigen Values 16 CS229: Machine Learning

Basic PCA algoritm

- Start from N by d data matrix X
- Recenter: subtract mean from each row of X - $X_c \leftarrow X - X$
- Compute covariance matrix:
 - $\Sigma \leftarrow 1/N X_c^T X_c$
- Find eigen vectors and values of $\boldsymbol{\Sigma}$
- **Principal components:** k eigen vectors with highest eigen values

PCA example

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

©2022 Carlos Guestrin

: Machine Learning

PCA example – reconstruction

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

only used first principal component

©2022 Carlos Guestrin

: Machine Learning

Eigenfaces [Turk, Pentland '91]

Eigenfaces reconstruction

• Each image corresponds to adding 8 principal components:

Scaling up

- Covariance matrix can be really big!
 - Σ is d by d
 - Say, only 10000 features
 - finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - finds to k eigenvectors
 - great implementations available, e.g., python, R, Matlab svd

SVD

- Write $X = W S V^{T}$
 - $X \leftarrow$ data matrix, one row per datapoint
 - W \leftarrow weight matrix, one row per datapoint coordinate of x^i in eigenspace
 - $S \leftarrow$ singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_j
 - $V^{\mathsf{T}} \leftarrow \text{singular vector matrix}$
 - in our setting each row is eigenvector \boldsymbol{v}_{j}

PCA using SVD algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 X_c ← X − X
- Call SVD algorithm on $X_{\rm c}$ ask for k singular vectors
- Principal components: k singular vectors with highest singular values (rows of V^{T})
 - Coefficients become:

What you need to know

- Dimensionality reduction
 why and when it's important
- Simple feature selection
- Principal component analysis
 - minimizing reconstruction error
 - relationship to covariance matrix and eigenvectors
 - using SVD