CS229 Section: Linear Algebra

Griffin Young

Slides adapted from past CS229 teams

October 1, 2021

Outline

1 Basic Concepts and Notation

2 Matrix Multiplication

3 Operations and Properties

4 Matrix Calculus

Basic Concepts and Notation

Basic Notation

- By $x \in \mathbb{R}^{n}$, we denote a vector with n entries.

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- By $A \in \mathbb{R}^{m \times n}$ we denote a matrix with m rows and n columns, where the entries of A are real numbers.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a^{1} & a^{2} & \cdots & a^{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right] .
$$

The Identity Matrix

The identity matrix, denoted $I \in \mathbb{R}^{n \times n}$, is a square matrix with ones on the diagonal and zeros everywhere else. That is,

$$
I_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

It has the property that for all $A \in \mathbb{R}^{m \times n}$,

$$
A I=A=I A
$$

Diagonal matrices

A diagonal matrix is a matrix where all non-diagonal elements are 0 . This is typically denoted $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, with

$$
D_{i j}= \begin{cases}d_{i} & i=j \\ 0 & i \neq j\end{cases}
$$

Clearly, $I=\operatorname{diag}(1,1, \ldots, 1)$.

Outline

1 Basic Concepts and Notation

2 Matrix Multiplication

3 Operations and Properties

4 Matrix Calculus

Vector-Vector Product

- inner product or dot product

$$
x^{T} y \in \mathbb{R}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i}
$$

- outer product

$$
x y^{T} \in \mathbb{R}^{m \times n}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1} & x_{m} y_{2} & \cdots & x_{m} y_{n}
\end{array}\right] .
$$

Matrix-Vector Product

- If we write A by rows, then we can express $A x$ as,

$$
y=A x=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right] x=\left[\begin{array}{c}
a_{1}^{T} x \\
a_{2}^{T} x \\
\vdots \\
a_{m}^{T} x
\end{array}\right]
$$

Matrix-Vector Product

- If we write A by columns, then we have:

$$
y=A x=\left[\begin{array}{cccc}
\mid & \mid & & \mid \tag{1}\\
a^{1} & a^{2} & \ldots & a^{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[a^{1}\right] x_{1}+\left[a^{2}\right] x_{2}+\ldots+\left[a^{n}\right] x_{n} .
$$

y is a linear combination of the columns of A.

Matrix-Vector Product

It is also possible to multiply on the left by a row vector.

- If we write A by columns, then we can express $x^{\top} A$ as,

$$
y^{T}=x^{T} A=x^{T}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a^{1} & a^{2} & \cdots & a^{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{llll}
x^{T} a^{1} & x^{T} a^{2} & \cdots & x^{T} a^{n}
\end{array}\right]
$$

Matrix-Vector Product

It is also possible to multiply on the left by a row vector.

- expressing A in terms of rows we have:

$$
\begin{aligned}
y^{T}=x^{T} A & =\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right] \\
& =x_{1}\left[\begin{array}{lll}
- & a_{1}^{T} & -
\end{array}\right]+x_{2}\left[\begin{array}{lll}
- & a_{2}^{T} & -
\end{array}\right]+\ldots+x_{m}\left[\begin{array}{lll}
- & a_{m}^{T} & -
\end{array}\right]
\end{aligned}
$$

y^{T} is a linear combination of the rows of A.

Matrix-Matrix Multiplication (different views)

1. As a set of vector-vector products (dot product)

$$
C=A B=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
b^{1} & b^{2} & \cdots & b^{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
a_{1}^{T} b^{1} & a_{1}^{T} b^{2} & \cdots & a_{1}^{T} b^{p} \\
a_{2}^{T} b^{1} & a_{2}^{T} b^{2} & \cdots & a_{2}^{T} b^{p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m}^{T} b^{1} & a_{m}^{T} b^{2} & \cdots & a_{m}^{T} b^{p}
\end{array}\right]
$$

Matrix-Matrix Multiplication (different views)

2. As a sum of outer products

$$
C=A B=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a^{1} & a^{2} & \ldots & a^{p} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & b_{1}^{T} & - \\
- & b_{2}^{T} & - \\
& \vdots & \\
- & b_{p}^{T} & -
\end{array}\right]=\sum_{i=1}^{p} a^{i} b_{i}^{T} .
$$

Matrix-Matrix Multiplication (different views)

3. As a set of matrix-vector products.

$$
C=A B=A\left[\begin{array}{cccc}
\mid & \mid & & \mid \tag{2}\\
b^{1} & b^{2} & \cdots & b^{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A b^{1} & A b^{2} & \cdots & A b^{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Here the ith column of C is given by the matrix-vector product with the vector on the right, $c_{i}=A b_{i}$. These matrix-vector products can in turn be interpreted using both viewpoints given in the previous subsection.

Matrix-Matrix Multiplication (different views)

4. As a set of vector-matrix products.

$$
C=A B=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right] B=\left[\begin{array}{ccc}
- & a_{1}^{T} B & - \\
- & a_{2}^{T} B & - \\
& \vdots & \\
- & a_{m}^{T} B & -
\end{array}\right]
$$

Matrix-Matrix Multiplication (properties)

- Associative: $(A B) C=A(B C)$.
- Distributive: $A(B+C)=A B+A C$.
- In general, not commutative; that is, it can be the case that $A B \neq B A$. (For example, if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$, the matrix product $B A$ does not even exist if m and q are not equal!)

Outline

1 Basic Concepts and Notation

2 Matrix Multiplication

3 Operations and Properties

4 Matrix Calculus

Operations and Properties

The Transpose

The transpose of a matrix results from "flipping" the rows and columns. Given a matrix $A \in \mathbb{R}^{m \times n}$, its transpose, written $A^{T} \in \mathbb{R}^{n \times m}$, is the $n \times m$ matrix whose entries are given by

$$
\left(A^{T}\right)_{i j}=A_{j i}
$$

The following properties of transposes are easily verified:

- $\left(A^{T}\right)^{T}=A$
- $(A B)^{T}=B^{T} A^{T}$
- $(A+B)^{T}=A^{T}+B^{T}$

Trace

The trace of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr} A$, is the sum of diagonal elements in the matrix:

$$
\operatorname{tr} A=\sum_{i=1}^{n} A_{i j}
$$

The trace has the following properties:

- For $A \in \mathbb{R}^{n \times n}, \operatorname{tr} A=\operatorname{tr} A^{T}$.
- For $A, B \in \mathbb{R}^{n \times n}, \operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$.
- For $A \in \mathbb{R}^{n \times n}, t \in \mathbb{R}, \operatorname{tr}(t A)=t \operatorname{tr} A$.
- For A, B such that $A B$ is square, $\operatorname{tr} A B=\operatorname{tr} B A$.
- For A, B, C such that $A B C$ is square, $\operatorname{tr} A B C=\operatorname{tr} B C A=\operatorname{tr} C A B$, and so on for the product of more matrices.

Norms

A norm of a vector $\|x\|$ is informally a measure of the "length" of the vector.

More formally, a norm is any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies 4 properties:

1. For all $x \in \mathbb{R}^{n}, f(x) \geq 0$ (non-negativity).
2. $f(x)=0$ if and only if $x=0$ (definiteness).
3. For all $x \in \mathbb{R}^{n}, t \in \mathbb{R}, f(t x)=|t| f(x)$ (homogeneity).
4. For all $x, y \in \mathbb{R}^{n}, f(x+y) \leq f(x)+f(y)$ (triangle inequality).

Examples of Norms

The commonly-used Euclidean or ℓ_{2} norm,

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

The ℓ_{1} norm,

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

The ℓ_{∞} norm,

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right| .
$$

Examples of Norms

In fact, all three norms presented so far are examples of the family of ℓ_{p} norms, which are parameterized by a real number $p \geq 1$, and defined as

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Matrix Norms

Norms can also be defined for matrices, such as the Frobenius norm,

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}
$$

Many other norms exist, but they are beyond the scope of this review.

Linear Independence

A set of vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\} \subset \mathbb{R}^{m}$ is said to be (linearly) dependent if one vector belonging to the set can be represented as a linear combination of the remaining vectors; that is, if

$$
x_{n}=\sum_{i=1}^{n-1} \alpha_{i} x_{i}
$$

for some scalar values $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{R}$; otherwise, the vectors are (linearly) independent.

Linear Independence

A set of vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\} \subset \mathbb{R}^{m}$ is said to be (linearly) dependent if one vector belonging to the set can be represented as a linear combination of the remaining vectors; that is, if

$$
x_{n}=\sum_{i=1}^{n-1} \alpha_{i} x_{i}
$$

for some scalar values $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{R}$; otherwise, the vectors are (linearly) independent. Example:

$$
x_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right] \quad x_{3}=\left[\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right]
$$

are linearly dependent because $x_{3}=-2 x_{1}+x_{2}$.

Rank of a Matrix

- The column rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the largest number of columns of A that constitute a linearly independent set.

Rank of a Matrix

- The column rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the largest number of columns of A that constitute a linearly independent set.
- The row rank is the largest number of rows of A that constitute a linearly independent set.

Rank of a Matrix

- The column rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the largest number of columns of A that constitute a linearly independent set.
- The row rank is the largest number of rows of A that constitute a linearly independent set.
- For any matrix $A \in \mathbb{R}^{m \times n}$, it turns out that the column rank of A is equal to the row rank of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A, denoted as $\operatorname{rank}(A)$.

Properties of the Rank

- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) \leq \min (m, n)$. If $\operatorname{rank}(A)=\min (m, n)$, then A is said to be full rank.

Properties of the Rank

- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) \leq \min (m, n)$. If $\operatorname{rank}(A)=\min (m, n)$, then A is said to be full rank.
- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.

Properties of the Rank

- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) \leq \min (m, n)$. If $\operatorname{rank}(A)=\min (m, n)$, then A is said to be full rank.
- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
- For $A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{p \times n}, \operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$.

Properties of the Rank

- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) \leq \min (m, n)$. If $\operatorname{rank}(A)=\min (m, n)$, then A is said to be full rank.
- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
- For $A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{p \times n}, \operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$.
- For $A, B \in \mathbb{R}^{m \times n}, \operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.

The Inverse of a Square Matrix

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1}, and is the unique matrix such that

$$
A^{-1} A=I=A A^{-1}
$$

The Inverse of a Square Matrix

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1}, and is the unique matrix such that

$$
A^{-1} A=I=A A^{-1}
$$

- We say that A is invertible or non-singular if A^{-1} exists and non-invertible or singular otherwise.

The Inverse of a Square Matrix

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1}, and is the unique matrix such that

$$
A^{-1} A=I=A A^{-1}
$$

- We say that A is invertible or non-singular if A^{-1} exists and non-invertible or singular otherwise.
- In order for a square matrix A to have an inverse A^{-1}, then A must be full rank.

The Inverse of a Square Matrix

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1}, and is the unique matrix such that

$$
A^{-1} A=I=A A^{-1}
$$

- We say that A is invertible or non-singular if A^{-1} exists and non-invertible or singular otherwise.
- In order for a square matrix A to have an inverse A^{-1}, then A must be full rank.
- Properties (Assuming $A, B \in \mathbb{R}^{n \times n}$ are non-singular):
- $\left(A^{-1}\right)^{-1}=A$
- $(A B)^{-1}=B^{-1} A^{-1}$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$. For this reason this matrix is often denoted A^{-T}.

Orthogonal Matrices

- Two vectors $x, y \in \mathbb{R}^{n}$ are orthogonal if $x^{T} y=0$.
- A vector $x \in \mathbb{R}^{n}$ is normalized if $\|x\|_{2}=1$.
- A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalized (the columns are then referred to as being orthonormal).

Orthogonal Matrices

- Two vectors $x, y \in \mathbb{R}^{n}$ are orthogonal if $x^{T} y=0$.
- A vector $x \in \mathbb{R}^{n}$ is normalized if $\|x\|_{2}=1$.
- A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalized (the columns are then referred to as being orthonormal).
- Properties:
- The inverse of an orthogonal matrix is its transpose.

$$
U^{T} U=I=U U^{T} .
$$

Orthogonal Matrices

- Two vectors $x, y \in \mathbb{R}^{n}$ are orthogonal if $x^{T} y=0$.
- A vector $x \in \mathbb{R}^{n}$ is normalized if $\|x\|_{2}=1$.
- A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalized (the columns are then referred to as being orthonormal).
- Properties:
- The inverse of an orthogonal matrix is its transpose.

$$
U^{T} U=I=U U^{T}
$$

- Operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,

$$
\|U x\|_{2}=\|x\|_{2}
$$

for any $x \in \mathbb{R}^{n}, U \in \mathbb{R}^{n \times n}$ orthogonal.

Span and Projection

- The span of a set of vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is the set of all vectors that can be expressed as a linear combination of $\left\{x_{1}, \ldots, x_{n}\right\}$. That is,

$$
\operatorname{span}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)=\left\{v: v=\sum_{i=1}^{n} \alpha_{i} x_{i}, \quad \alpha_{i} \in \mathbb{R}\right\} .
$$

Span and Projection

- The span of a set of vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is the set of all vectors that can be expressed as a linear combination of $\left\{x_{1}, \ldots, x_{n}\right\}$. That is,

$$
\operatorname{span}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)=\left\{v: v=\sum_{i=1}^{n} \alpha_{i} x_{i}, \quad \alpha_{i} \in \mathbb{R}\right\}
$$

- The projection of a vector $y \in \mathbb{R}^{m}$ onto the span of $\left\{x_{1}, \ldots, x_{n}\right\}$ is the vector $v \in \operatorname{span}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)$, such that v is as close as possible to y, as measured by the Euclidean norm $\|v-y\|_{2}$.

$$
\operatorname{Proj}\left(y ;\left\{x_{1}, \ldots x_{n}\right\}\right)=\operatorname{argmin}_{v \in \operatorname{span}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)}\|y-v\|_{2} .
$$

Range

- The range or the column space of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$, is the the span of the columns of A. In other words,

$$
\mathcal{R}(A)=\left\{v \in \mathbb{R}^{m}: v=A x, x \in \mathbb{R}^{n}\right\} .
$$

Range

- The range or the column space of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$, is the the span of the columns of A. In other words,

$$
\mathcal{R}(A)=\left\{v \in \mathbb{R}^{m}: v=A x, x \in \mathbb{R}^{n}\right\} .
$$

- Assuming A is full rank and $n<m$, the projection of a vector $y \in \mathbb{R}^{m}$ onto the range of A is given by,

$$
\operatorname{Proj}(y ; A)=\operatorname{argmin}_{v \in \mathcal{R}(A)}\|v-y\|_{2} .
$$

Null space

The nullspace of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(A)$ is the set of all vectors that equal 0 when multiplied by A, i.e.,

$$
\mathcal{N}(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}
$$

The Determinant

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$, is a function $\operatorname{det}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$, and is denoted $|A|$ or $\operatorname{det} A$.
Given a matrix

$$
\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{n}^{T} & -
\end{array}\right]
$$

consider the set of points $S \subset \mathbb{R}^{n}$ as follows:

$$
S=\left\{v \in \mathbb{R}^{n}: v=\sum_{i=1}^{n} \alpha_{i} a_{i} \text { where } 0 \leq \alpha_{i} \leq 1, i=1, \ldots, n\right\} .
$$

The absolute value of the determinant of A is a measure of the "volume" of the set S.

The Determinant: Intuition

For example, consider the 2×2 matrix,

$$
A=\left[\begin{array}{ll}
1 & 3 \tag{3}\\
3 & 2
\end{array}\right]
$$

Here, the rows of the matrix are

$$
a_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad a_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is $1,|I|=1$. (Geometrically, the volume of a unit hypercube is 1).

The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is $1,|I|=1$. (Geometrically, the volume of a unit hypercube is 1).
2. Given a matrix $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $t \in \mathbb{R}$, then the determinant of the new matrix is $t|A|$, (Geometrically, multiplying one of the sides of the set S by a factor t causes the volume to increase by a factor t.)

The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is $1,|I|=1$. (Geometrically, the volume of a unit hypercube is 1).
2. Given a matrix $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $t \in \mathbb{R}$, then the determinant of the new matrix is $t|A|$, (Geometrically, multiplying one of the sides of the set S by a factor t causes the volume to increase by a factor t.)
3. If we exchange any two rows a_{i}^{T} and a_{j}^{T} of A, then the determinant of the new matrix is $-|A|$, for example

The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is $1,|I|=1$. (Geometrically, the volume of a unit hypercube is 1).
2. Given a matrix $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $t \in \mathbb{R}$, then the determinant of the new matrix is $t|A|$, (Geometrically, multiplying one of the sides of the set S by a factor t causes the volume to increase by a factor t.)
3. If we exchange any two rows a_{i}^{T} and a_{j}^{T} of A, then the determinant of the new matrix is $-|A|$, for example

The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is $1,|I|=1$. (Geometrically, the volume of a unit hypercube is 1).
2. Given a matrix $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $t \in \mathbb{R}$, then the determinant of the new matrix is $t|A|$, (Geometrically, multiplying one of the sides of the set S by a factor t causes the volume to increase by a factor t.)
3. If we exchange any two rows a_{i}^{T} and a_{j}^{T} of A, then the determinant of the new matrix is $-|A|$, for example

In case you are wondering, it is not immediately obvious that a function satisfying the above three properties exists. In fact, though, such a function does exist, and is unique (which we will not prove here).

The Determinant: Properties

- For $A \in \mathbb{R}^{n \times n},|A|=\left|A^{T}\right|$.
- For $A, B \in \mathbb{R}^{n \times n},|A B|=|A||B|$.
- For $A \in \mathbb{R}^{n \times n},|A|=0$ if and only if A is singular (i.e., non-invertible). (If A is singular then it does not have full rank, and hence its columns are linearly dependent. In this case, the set S corresponds to a "flat sheet" within the n-dimensional space and hence has zero volume.)
- For $A \in \mathbb{R}^{n \times n}$ and A non-singular, $\left|A^{-1}\right|=1 /|A|$.

The Determinant: Formula

Let $A \in \mathbb{R}^{n \times n}, A_{\backslash i, \backslash j} \in \mathbb{R}^{(n-1) \times(n-1)}$ be the matrix that results from deleting the i th row and j th column from A.
The general (recursive) formula for the determinant is

$$
\begin{aligned}
|A| & =\sum_{i=1}^{n}(-1)^{i+j} a_{i j}\left|A_{\backslash i, \backslash j}\right| \quad(\text { for any } j \in 1, \ldots, n) \\
& =\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|A_{\backslash i, \backslash j}\right| \quad(\text { for any } i \in 1, \ldots, n)
\end{aligned}
$$

with the initial case that $|A|=a_{11}$ for $A \in \mathbb{R}^{1 \times 1}$. If we were to expand this formula completely for $A \in \mathbb{R}^{n \times n}$, there would be a total of $n!$ (n factorial) different terms. For this reason, we hardly ever explicitly write the complete equation of the determinant for matrices bigger than 3×3.

The Determinant: Examples

However, the equations for determinants of matrices up to size 3×3 are fairly common, and it is good to know them:

$$
\begin{aligned}
& \left|\left[a_{11}\right]\right|=a_{11} \\
& \left|\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right|=a_{11} a_{22}-a_{12} a_{21} \\
& \left|\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right|=\begin{array}{c}
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}
\end{array}
\end{aligned}
$$

Quadratic Forms

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^{n}$, the scalar value $x^{T} A x$ is called a quadratic form. Written explicitly, we see that

$$
x^{T} A x=\sum_{i=1}^{n} x_{i}(A x)_{i}=\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} A_{i j} x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} .
$$

Quadratic Forms

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^{n}$, the scalar value $x^{T} A x$ is called a quadratic form. Written explicitly, we see that

$$
x^{T} A x=\sum_{i=1}^{n} x_{i}(A x)_{i}=\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} A_{i j} x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} .
$$

We often implicitly assume that the matrices appearing in a quadratic form are symmetric.

$$
x^{T} A x=\left(x^{T} A x\right)^{T}=x^{T} A^{T} x=x^{T}\left(\frac{1}{2} A+\frac{1}{2} A^{T}\right) x
$$

Positive Semidefinite Matrices

A symmetric matrix $A \in \mathbb{S}^{n}$ is:

- positive definite (PD), denoted $A \succ 0$ if for all non-zero vectors $x \in \mathbb{R}^{n}, x^{T} A x>0$.
- positive semidefinite (PSD), denoted $A \succeq 0$ if for all vectors $x^{T} A x \geq 0$.
- negative definite (ND), denoted $A \prec 0$ if for all non-zero $x \in \mathbb{R}^{n}, x^{T} A x<0$.
- negative semidefinite (NSD), denoted $A \preceq 0$) if for all $x \in \mathbb{R}^{n}, x^{T} A x \leq 0$.
- indefinite, if it is neither positive semidefinite nor negative semidefinite - i.e., if there exists $x_{1}, x_{2} \in \mathbb{R}^{n}$ such that $x_{1}^{T} A x_{1}>0$ and $x_{2}^{T} A x_{2}<0$.

Positive Semidefinite Matrices

- One important property of positive definite and negative definite matrices is that they are always full rank, and hence, invertible.
- Given any matrix $A \in \mathbb{R}^{m \times n}$ (not necessarily symmetric or even square), the matrix $G=A^{T} A$ (sometimes called a Gram matrix) is always positive semidefinite. Further, if $m \geq n$ and A is full rank, then $G=A^{T} A$ is positive definite.

Eigenvalues and Eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A and $x \in \mathbb{C}^{n}$ is the corresponding eigenvector if

$$
A x=\lambda x, \quad x \neq 0
$$

Intuitively, this definition means that multiplying A by the vector x results in a new vector that points in the same direction as x, but scaled by a factor λ.

Eigenvalues and Eigenvectors

We can rewrite the equation above to state that (λ, x) is an eigenvalue-eigenvector pair of A if,

$$
(\lambda I-A) x=0, \quad x \neq 0
$$

But $(\lambda I-A) x=0$ has a non-zero solution to x if and only if $(\lambda I-A)$ has a non-empty nullspace, which is only the case if $(\lambda I-A)$ is singular, i.e.,

$$
|(\lambda I-A)|=0
$$

We can now use the previous definition of the determinant to expand this expression $|(\lambda I-A)|$ into a (very large) polynomial in λ, where λ will have degree n. It's often called the characteristic polynomial of the matrix A.

Properties of eigenvalues and eigenvectors

- The trace of a A is equal to the sum of its eigenvalues,

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i} .
$$

Properties of eigenvalues and eigenvectors

- The trace of a A is equal to the sum of its eigenvalues,

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}
$$

- The determinant of A is equal to the product of its eigenvalues,

$$
|A|=\prod_{i=1}^{n} \lambda_{i}
$$

Properties of eigenvalues and eigenvectors

- The trace of a A is equal to the sum of its eigenvalues,

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i} .
$$

- The determinant of A is equal to the product of its eigenvalues,

$$
|A|=\prod_{i=1}^{n} \lambda_{i}
$$

- The rank of A is equal to the number of non-zero eigenvalues of A.

Properties of eigenvalues and eigenvectors

- The trace of a A is equal to the sum of its eigenvalues,

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i} .
$$

- The determinant of A is equal to the product of its eigenvalues,

$$
|A|=\prod_{i=1}^{n} \lambda_{i}
$$

- The rank of A is equal to the number of non-zero eigenvalues of A.
- Suppose A is non-singular with eigenvalue λ and an associated eigenvector x. Then $1 / \lambda$ is an eigenvalue of A^{-1} with an associated eigenvector x, i.e., $A^{-1} x=(1 / \lambda) x$.

Properties of eigenvalues and eigenvectors

- The trace of a A is equal to the sum of its eigenvalues,

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}
$$

- The determinant of A is equal to the product of its eigenvalues,

$$
|A|=\prod_{i=1}^{n} \lambda_{i}
$$

- The rank of A is equal to the number of non-zero eigenvalues of A.
- Suppose A is non-singular with eigenvalue λ and an associated eigenvector x. Then $1 / \lambda$ is an eigenvalue of A^{-1} with an associated eigenvector x, i.e., $A^{-1} x=(1 / \lambda) x$.
- The eigenvalues of a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots d_{n}\right)$ are just the diagonal entries $d_{1}, \ldots d_{n}$.

Eigenvalues and Eigenvectors of Symmetric Matrices

Throughout this section, let's assume that A is a symmetric real matrix (i.e., $A^{\top}=A$). We have the following properties:

1. All eigenvalues of A are real numbers. We denote them by $\lambda_{1}, \ldots, \lambda_{n}$.
2. There exists a set of eigenvectors u_{1}, \ldots, u_{n} such that (i) for all i, u_{i} is an eigenvector with eigenvalue λ_{i} and (ii) u_{1}, \ldots, u_{n} are unit vectors and orthogonal to each other.

New Representation for Symmetric Matrices

- Let U be the orthonormal matrix that contains u_{i} 's as columns:

$$
U=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
u_{1} & u_{2} & \cdots & u_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

New Representation for Symmetric Matrices

- Let U be the orthonormal matrix that contains u_{i} 's as columns:

$$
U=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
u_{1} & u_{2} & \cdots & u_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

- Let $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the diagonal matrix that contains $\lambda_{1}, \ldots, \lambda_{n}$.

$$
A U=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A u_{1} & A u_{2} & \cdots & A u_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\lambda_{1} u_{1} & \lambda_{2} u_{2} & \cdots & \lambda_{n} u_{n} \\
\mid & \mid & & \mid
\end{array}\right]=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=U \Lambda
$$

New Representation for Symmetric Matrices

- Let U be the orthonormal matrix that contains u_{i} 's as columns:

$$
U=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
u_{1} & u_{2} & \cdots & u_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

- Let $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the diagonal matrix that contains $\lambda_{1}, \ldots, \lambda_{n}$.

$$
A U=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A u_{1} & A u_{2} & \cdots & A u_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\lambda_{1} u_{1} & \lambda_{2} u_{2} & \cdots & \lambda_{n} u_{n} \\
\mid & \mid & & \mid
\end{array}\right]=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=U \Lambda
$$

- Recalling that orthonormal matrix U satisfies that $U U^{T}=I$, we can diagonalize matrix A :

$$
\begin{equation*}
A=A U U^{T}=U \wedge U^{T} \tag{4}
\end{equation*}
$$

Background: representing vector w.r.t. another basis

- Any orthonormal matrix $U=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ u_{1} & u_{2} & \cdots & u_{n} \\ \mid & \mid & & \mid\end{array}\right]$ defines a new basis of \mathbb{R}^{n}.
- For any vector $x \in \mathbb{R}^{n}$ can be represented as a linear combination of u_{1}, \ldots, u_{n} with coefficient $\hat{x}_{1}, \ldots, \hat{x}_{n}$:

$$
x=\hat{x}_{1} u_{1}+\cdots+\hat{x}_{n} u_{n}=U \hat{x}
$$

- Indeed, such \hat{x} uniquely exists

$$
x=U \hat{x} \Leftrightarrow U^{\top} x=\hat{x}
$$

In other words, the vector $\hat{x}=U^{T} x$ can serve as another representation of the vector x w.r.t the basis defined by U.

"Diagonalizing" matrix-vector multiplication

- Left-multiplying matrix A can be viewed as left-multiplying a diagonal matrix w.r.t the basic of the eigenvectors.
- Suppose x is a vector and \hat{x} is its representation w.r.t to the basis of U.
- Let $z=A x$ be the matrix-vector product.
- the representation z w.r.t the basis of U :

$$
\hat{z}=U^{T} z=U^{T} A x=U^{T} U \Lambda U^{T} x=\Lambda \hat{x}=\left[\begin{array}{c}
\lambda_{1} \hat{x}_{1} \\
\lambda_{2} \hat{x}_{2} \\
\vdots \\
\lambda_{n} \hat{x}_{n}
\end{array}\right]
$$

- We see that left-multiplying matrix A in the original space is equivalent to left-multiplying the diagonal matrix \wedge w.r.t the new basis, which is merely scaling each coordinate by the corresponding eigenvalue.

"Diagonalizing" matrix-vector multiplication

Under the new basis, multiplying a matrix multiple times becomes much simpler as well. For example, suppose $q=A A A x$.

$$
\hat{q}=U^{T} q=U^{T} A A A x=U^{T} U \wedge U^{T} U \wedge U^{T} U \Lambda U^{T} x=\Lambda^{3} \hat{x}=\left[\begin{array}{c}
\lambda_{1}^{3} \hat{x}_{1} \\
\lambda_{2}^{3} \hat{x}_{2} \\
\vdots \\
\lambda_{n}^{3} \hat{x}_{n}
\end{array}\right]
$$

"Diagonalizing" quadratic form

As a directly corollary, the quadratic form $x^{T} A x$ can also be simplified under the new basis

$$
x^{T} A x=x^{T} U \Lambda U^{T} x=\hat{x}^{T} \Lambda \hat{x}=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}^{2}
$$

(Recall that with the old representation, $x^{T} A x=\sum_{i=1, j=1}^{n} x_{i} x_{j} A_{i j}$ involves a sum of n^{2} terms instead of n terms in the equation above.)

The definiteness of the matrix A depends entirely on the sign of its eigenvalues

1. If all $\lambda_{i}>0$, then the matrix A is positive definite because $x^{T} A x=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}^{2}>0$ for any $\hat{x} \neq 0 .{ }^{1}$
2. If all $\lambda_{i} \geq 0$, it is positive semidefinite because $x^{T} A x=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}^{2} \geq 0$ for all \hat{x}.
3. Likewise, if all $\lambda_{i}<0$ or $\lambda_{i} \leq 0$, then A is negative definite or negative semidefinite respectively.
4. Finally, if A has both positive and negative eigenvalues, say $\lambda_{i}>0$ and $\lambda_{j}<0$, then it is indefinite. This is because if we let \hat{x} satisfy $\hat{x}_{i}=1$ and $\hat{x}_{k}=0, \forall k \neq i$, then $x^{T} A x=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}^{2}>0$. Similarly we can let \hat{x} satisfy $\hat{x}_{j}=1$ and $\hat{x}_{k}=0, \forall k \neq j$, then $x^{T} A x=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}^{2}<0$.
[^0]
Outline

1 Basic Concepts and Notation

2 Matrix Multiplication

3 Operations and Properties

4 Matrix Calculus

Matrix Calculus

The Gradient

Suppose that $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is a function that takes as input a matrix A of size $m \times n$ and returns a real value. Then the gradient of f (with respect to $A \in \mathbb{R}^{m \times n}$) is the matrix of partial derivatives, defined as:

$$
\nabla_{A} f(A) \in \mathbb{R}^{m \times n}=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1}} \\
\frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m 1}} & \frac{\partial f(A)}{\partial A_{m 2}} & \cdots & \frac{\partial f(A)}{\partial A_{m n}}
\end{array}\right]
$$

i.e., an $m \times n$ matrix with

$$
\left(\nabla_{A} f(A)\right)_{i j}=\frac{\partial f(A)}{\partial A_{i j}}
$$

The Gradient

Note that the size of $\nabla_{A} f(A)$ is always the same as the size of A. So if, in particular, A is just a vector $x \in \mathbb{R}^{n}$,

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] .
$$

The Gradient

Note that the size of $\nabla_{A} f(A)$ is always the same as the size of A. So if, in particular, A is just a vector $x \in \mathbb{R}^{n}$,

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] .
$$

It follows directly from the equivalent properties of partial derivatives that:

- $\nabla_{x}(f(x)+g(x))=\nabla_{x} f(x)+\nabla_{x} g(x)$.
- For $t \in \mathbb{R}, \nabla_{x}(t f(x))=t \nabla_{x} f(x)$.

The Hessian

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function that takes a vector in \mathbb{R}^{n} and returns a real number. Then the Hessian matrix with respect to x, written $\nabla_{x}^{2} f(x)$ or simply as H is the $n \times n$ matrix of partial derivatives,

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right] .
$$

In other words, $\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}$, with

$$
\left(\nabla_{x}^{2} f(x)\right)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

The Hessian

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function that takes a vector in \mathbb{R}^{n} and returns a real number. Then the Hessian matrix with respect to x, written $\nabla_{x}^{2} f(x)$ or simply as H is the $n \times n$ matrix of partial derivatives,

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right] .
$$

Note that the Hessian is always symmetric, since

$$
\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}}
$$

Gradients of Linear Functions

For $x \in \mathbb{R}^{n}$, let $f(x)=b^{T} x$ for some known vector $b \in \mathbb{R}^{n}$. Then

$$
f(x)=\sum_{i=1}^{n} b_{i} x_{i}
$$

so

$$
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} b_{i} x_{i}=b_{k} .
$$

From this we can easily see that $\nabla_{x} b^{T} x=b$. This should be compared to the analogous situation in single variable calculus, where $\partial /(\partial x) a x=a$.

Gradients of Quadratic Function

Now consider the quadratic function $f(x)=x^{T} A x$ for $A \in \mathbb{S}^{n}$. Remember that

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} .
$$

To take the partial derivative, we'll consider the terms including x_{k} and x_{k}^{2} factors separately:

$$
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

Gradients of Quadratic Function

Now consider the quadratic function $f(x)=x^{T} A x$ for $A \in \mathbb{S}^{n}$. Remember that

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

To take the partial derivative, we'll consider the terms including x_{k} and x_{k}^{2} factors separately:

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right]
\end{aligned}
$$

Gradients of Quadratic Function

Now consider the quadratic function $f(x)=x^{T} A x$ for $A \in \mathbb{S}^{n}$. Remember that

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

To take the partial derivative, we'll consider the terms including x_{k} and x_{k}^{2} factors separately:

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}
\end{aligned}
$$

Gradients of Quadratic Function

Now consider the quadratic function $f(x)=x^{\top} A x$ for $A \in \mathbb{S}^{n}$. Remember that

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

To take the partial derivative, we'll consider the terms including x_{k} and x_{k}^{2} factors separately:

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\sum_{i \neq k} A_{i k} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k} \\
& =\sum_{i=1}^{n} A_{i k} x_{i}+\sum_{j=1}^{n} A_{k j} x_{j}=2 \sum_{i=1}^{n} A_{k i} x_{i}
\end{aligned}
$$

Hessian of Quadratic Functions

Finally, let's look at the Hessian of the quadratic function $f(x)=x^{T} A x$ In this case,

$$
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{\ell}}=\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{\ell}}\right]=\frac{\partial}{\partial x_{k}}\left[2 \sum_{i=1}^{n} A_{\ell i} x_{i}\right]=2 A_{\ell k}=2 A_{k \ell}
$$

Therefore, it should be clear that $\nabla_{x}^{2} x^{\top} A x=2 A$, which should be entirely expected (and again analogous to the single-variable fact that $\left.\partial^{2} /\left(\partial x^{2}\right) a x^{2}=2 a\right)$.

Recap

- $\nabla_{x} b^{T} x=b$
- $\nabla_{x}^{2} b^{T} x=0$
- $\nabla_{x} x^{\top} A x=2 A x$ (if A symmetric)
- $\nabla_{x}^{2} x^{\top} A x=2 A$ (if A symmetric)

Matrix Calculus Example: Least Squares

- Given a full rank matrix $A \in \mathbb{R}^{m \times n}$, and a vector $b \in \mathbb{R}^{m}$ such that $b \notin \mathcal{R}(A)$, we want to find a vector x such that $A x$ is as close as possible to b, as measured by the square of the Euclidean norm $\|A x-b\|_{2}^{2}$.

Matrix Calculus Example: Least Squares

- Given a full rank matrix $A \in \mathbb{R}^{m \times n}$, and a vector $b \in \mathbb{R}^{m}$ such that $b \notin \mathcal{R}(A)$, we want to find a vector x such that $A x$ is as close as possible to b, as measured by the square of the Euclidean norm $\|A x-b\|_{2}^{2}$.
- Using the fact that $\|x\|_{2}^{2}=x^{T} x$, we have

$$
\|A x-b\|_{2}^{2}=(A x-b)^{T}(A x-b)=x^{T} A^{T} A x-2 b^{T} A x+b^{T} b
$$

Matrix Calculus Example: Least Squares

- Given a full rank matrix $A \in \mathbb{R}^{m \times n}$, and a vector $b \in \mathbb{R}^{m}$ such that $b \notin \mathcal{R}(A)$, we want to find a vector x such that $A x$ is as close as possible to b, as measured by the square of the Euclidean norm $\|A x-b\|_{2}^{2}$.
- Using the fact that $\|x\|_{2}^{2}=x^{\top} x$, we have

$$
\|A x-b\|_{2}^{2}=(A x-b)^{T}(A x-b)=x^{T} A^{T} A x-2 b^{T} A x+b^{T} b
$$

- Taking the gradient with respect to x we have:

$$
\begin{aligned}
\nabla_{x}\left(x^{T} A^{T} A x-2 b^{T} A x+b^{T} b\right) & =\nabla_{x} x^{T} A^{T} A x-\nabla_{x} 2 b^{T} A x+\nabla_{x} b^{T} b \\
& =2 A^{T} A x-2 A^{T} b
\end{aligned}
$$

Matrix Calculus Example: Least Squares

- Given a full rank matrix $A \in \mathbb{R}^{m \times n}$, and a vector $b \in \mathbb{R}^{m}$ such that $b \notin \mathcal{R}(A)$, we want to find a vector x such that $A x$ is as close as possible to b, as measured by the square of the Euclidean norm $\|A x-b\|_{2}^{2}$.
- Using the fact that $\|x\|_{2}^{2}=x^{\top} x$, we have

$$
\|A x-b\|_{2}^{2}=(A x-b)^{T}(A x-b)=x^{T} A^{T} A x-2 b^{T} A x+b^{T} b
$$

- Taking the gradient with respect to x we have:

$$
\begin{aligned}
\nabla_{x}\left(x^{T} A^{T} A x-2 b^{T} A x+b^{T} b\right) & =\nabla_{x} x^{T} A^{T} A x-\nabla_{x} 2 b^{T} A x+\nabla_{x} b^{T} b \\
& =2 A^{T} A x-2 A^{T} b
\end{aligned}
$$

- Setting this last expression equal to zero and solving for x gives the normal equations

$$
x=\left(A^{T} A\right)^{-1} A^{T} b
$$

[^0]: ${ }^{1}$ Note that $\hat{x} \neq 0 \Leftrightarrow x \neq 0$.

