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Supervised Learning
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n Observe:
¨ Features x
¨ Labels y (for all data points)

n Learning goal:
¨ Model to predict y from x
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Unsupervised Learning

n Observe:
¨ Features x

n Learning goal:
¨ Discover structure in space of x, e.g.:

n Clustering: infer cluster labels z
¨ Typically one cluster per input

n Dimensionality reduction: discover lower 
dimensional subspaces, e.g.:

¨ PCA – linear subspace
¨ Embeddings – general vector space 

n Topic modeling: infer cluster labels z
¨ Input can belong to multiple clusters

©2022 Carlos Guestrin
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Learning from less data:
semi-supervised, weakly supervised, multitask, 
transfer, few-shot, one-shot learning  

©2022 Carlos Guestrin
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Semi-supervised Learning

n Observe:
¨ Features x for all data points
¨ Labels y only for some data points

n Learning goal:
¨ Model to predict y from x

©2022 Carlos Guestrin
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Very Simple Semi-supervised learning algorithm

n Consider responsibilities in EM:

Soft assignments to clusters

(c)
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rik = p(zi = k|xi,⇡, µ,⌃) =
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Weakly Supervised Learning

n Decrease cost or complexity of labeling by 
using “surrogate” labels 

n Observe:
¨ Features x
¨ Some signal z related to true label y:

n Imprecise labels – simpler, high-level labels
n Inaccurate labels – inexpensive, lower-quality labels
n Existing resources – knowledge bases or heuristics to generate 

labels

n Learning goal:
¨ Model to predict y from x

©2022 Carlos Guestrin

Label y:
Perfect 

bounding 
box

Imprecise 
label

Inaccurate 
label
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Multitask Learning

n Observe:
¨ k tasks
¨ Each data point:

n Features x
n Labels yj for task j

¨ Potentially labels for multiple 
tasks

n Learning goal:
¨ Model to predict y1,…,yk from x

©2022 Carlos Guestrin

Cat Classification

Detection

Segmentation
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Transfer Learning

n Observe:
¨ Model M for previous task

n Maps x → z

¨ New task
n Features x
n Labels y

n Learning goal:
¨ Model to predict y from x

©2022 Carlos Guestrin

Lots of data:

Some data:

vs.
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Transfer learning: Use data from 
one task to help learn on another

Lots of data:
Learn 

neural net

Great 
accuracy on 

cat v. dog

Some data: Neural net as 
feature extractor

+

Simple classifier

Great 
accuracy on 

101 categories

Old idea, explored for deep learning by Donahue et al. ’14 & others

vs.

©2022 Carlos Guestrin
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What’s learned in a neural net

Very specific 
to Task 1

Should be ignored 
for other tasks

More generic
Can be used as feature extractor

vs.

Neural net trained for Task 1: cat vs. dog
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Transfer learning in more detail…

Very specific 
to Task 1

Should be ignored 
for other tasks

More generic
Can be used as feature extractor

For Task 2, predicting 101 categories, 
learn only end part of neural net

Use simple classifier
e.g., logistic regression, 
SVMs, nearest neighbor,…

Class?Keep weights fixed!

Neural net trained for Task 1: cat vs. dog

©2022 Carlos Guestrin
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Careful where you cut: 
latter layers may be too task specific

Layer 1 Layer 2 Layer 3 Prediction

Example 
detectors 
learned

Example 
interest 
points 
detected

[Zeiler & Fergus ‘13]

Too specific 
for new task

Use these!

©2022 Carlos Guestrin
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Few-Shot Learning

n Observe:
¨ Very few data points: (1 – 100)

n Features x
n Labels y

n Learning goal:
¨ Model to predict y from x

©2022 Carlos Guestrin

Lots of data:

Very little data:

vs.
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Zero-Shot Learning

n Observe:
¨ Features x
¨ Labels y

n Learning goal:
¨ Model to predict y’ from x

n For a new class y’ not seen in training data?????

©2022 Carlos Guestrin

Lots of data:

vs.

Zebra???
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Word Embeddings in NLP
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Word Embeddings Changed NLP

• Bag-of-word models were very common (based on counts of 
each word)

• Vector representations of word changed NLP (PCA, then 
word2vec, GloVe, transformers,…) 

• Language model-based word embeddings:
- Represent each word by e.g. a 300-dim vector

- Train vector to be good at predicting next word, e.g., on news corpora 

©2022 Carlos Guestrin
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[Joseph Turian 2008]

Embedding words

©2022 Carlos Guestrin
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Embedding words (zoom in)

[Joseph Turian 2008]
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GloVe Embeddings [Pennington et al. 2014]

• Nearest neighbors in embedding space:

©2022 Carlos Guestrin
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GloVe Embeddings [Pennington et al. 2014]

• Linear structures:

©2022 Carlos Guestrin
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GloVe Embeddings [Pennington et al. 2014]

• Linear structures:

• Analogies: 
- Paris is to France as Tokyo is to x

-man is to king as woman is to x

©2022 Carlos Guestrin
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Self-Supervised Learning

n Observe:
¨ Features x

n Usually sequence of data, e.g., text or video

¨ Define some supervision signal y (“label”) that 
can be automatically extracted from data

n Learning goal:
¨ Predict y from x

©2022 Carlos Guestrin

Language model:
¨ Label y is next word
¨ Sequence x – words thus far in the sentence
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Large language models & 
foundation models

This section includes content created by Percy Liang and the 
Stanford Center for Research of Foundation Models (CRFM)

©2022 Carlos Guestrin
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Language Models for Autocomplete 

©2022 Carlos Guestrin
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Language models have been getting bigger…

©2022 Carlos Guestrin



CS229: Machine Learning

When language models get big enough, new 
capabilities start to emerge… 

©2022 Carlos Guestrin
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foundation models: emergence

emergence

self-supervised learning scale+

=

Find a word that rhymes: duck, luck; lunch, munch

In 1885, Stanford _____

In 1885, Stanford University was _____
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OpenAI’s GPT-3
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Capabilities Emerge at Scale

©2022 Carlos Guestrin
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Code from Comments

©2022 Carlos Guestrin

GitHub CoPilot (powered by OpenAI’s Codex)
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Protein Folding

©2022 Carlos Guestrin

DeepMind’s AlphaFold, UW’s RoseTTAFold, Meta’s ESMFold
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Image Generation

©2022 Carlos Guestrin
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GANs [Goodfellow et al. 2014] 
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Generating Images from Text

©2022 Carlos Guestrin

pirate ship in the sea with a 
pirate kid smiling, children's 
book illustration, modern, 
naif, colorful, luminous, 
Lisa Wee by @franpaezgrillo

Lonely tree Forgotten night 
sky, 4K, high quality by 
@apslq

a person riding a bicycle 
fast down a hill, 4k by 
@guestrin

Examples generated 
with midjourney
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Foundation Model Perspective

©2022 Carlos Guestrin



CS229: Machine Learning40

Foundation Models

• Trained on broad data (self-supervised at scale)

• Adapted (lightly and effectively) to a wide range of 
downstream tasks

©2022 Carlos Guestrin



CS229: Machine Learning41

Prompting 

• Traditional classification task:

• Language modeling task:

• Prompting a language model:

©2022 Carlos Guestrin
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Example Prompts

©2022 Carlos Guestrin

Open AI GPT-3
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In-Context Learning

©2022 Carlos Guestrin

[Brown et al., 2020]
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Large-language models as few-shot learners

©2022 Carlos Guestrin

[Brown et al., 2020]
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Prompting vs. Fine-tuning

• In-context learning limited to 
maximum context size of LLMs
- Limits number of examples we can 

use
- Requires complex

“prompt engineering”
- Doesn’t create a standalone 

reusable model 

• Fine-tuning:
- Use some data to update model 

parameters for new task

©2022 Carlos Guestrin

Figure from [Brown et al., 2020]
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Risks and Harms of Foundation Models

©2022 Carlos Guestrin
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brittleness
Q: Which is heavier, a toaster or a pencil?
A: A pencil is heavier than a toaster.

Q: What is 1,000 + 4,000?
A: 5,000

Q: What is 1000 + 4000?
A: 2,000

lacks commonsense

lacks internal consistency

Content Courtesy of Percy Liang
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harms

generate offensive content
Two Muslims walked into the lobby of the 
Family Research Council in Washington, D.C. 
They shot the security guard.

Stanford University was founded in 1891. 
However, the university's roots date back to 1885 
when the Association for the Relief of California 
Indian Widows and Orphans was founded.

Climate change is the new communism - an 
ideology based on a false science that cannot 
be questioned.

generate untruthful content

enable disinformation

Content Courtesy of Percy Liang
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Racist Generated Data

©2022 Carlos Guestrin

Generated with OpenAI GPT-3 (text-davinci-002)
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Racist Generated Data

©2022 Carlos Guestrin

Generated with OpenAI GPT-3 (text-davinci-002)
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Transformers:
Basic Structure of Large Language Models

This section includes figures from this great tutorial:
The Illustrated Transformer – https://jalammar.github.io/illustrated-
transformer/

©2022 Carlos Guestrin

mailto:https://jalammar.github.io/illustrated-transformer/
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Predicting the next word from

• Suppose we have an embedding for the current word, 
how do we predict the next word?

©2022 Carlos Guestrin
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The Transformer Block: Learn “Embedding” 
for Multiple Inputs 

©2022 Carlos Guestrin
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Self-Attention

• ”The animal didn't cross the street because it was too tired”
- What does “it” refer to?

©2022 Carlos Guestrin
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Transformer Block in Detail 

©2022 Carlos Guestrin

r3 r4

z3 z4

x3 x4

Self-attention
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Computing the Output of Self-Attention

• Score: How much should token i pay attention to 
token j?
- Each token computes a query vector

- Each token computes a key vector

- Score is product of query i with key j:

- Normalize scores with softmax:

• What should my new “embedding” be?
- Each token computes a value vector

- Output for token i:
• Weighted sum of values of all tokens:

©2022 Carlos Guestrin

Machine Learning



CS229: Machine Learning57

Learn Weights to Compute Query, Key, Value Vectors

©2022 Carlos Guestrin
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Taking Position in Input into Account

• Self-attention ignores position of words in sentence
- Position matters!!!
• The frog ate the fly!

• The fly ate the dog!

• Add an extra embedding per position

©2022 Carlos Guestrin

Stanford University Machine
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Residual Connections [Ba et al. 2016]

• Gradients can go to zero for deep 
models

• Reduce vanishing gradient challenge 
by residual connections
- Add previous value and normalize by batch 

mean/variance

©2022 Carlos Guestrin

Machine Learning
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Full Transformer Models
“Attention is All You Need” [Vaswani et al. 2017]

©2022 Carlos Guestrin

Machine Learning
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Stanford Center for Research on Foundation 
Models (CRFM)

©2022 Carlos Guestrin
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Stanford Center for Research on Foundation 
Models (CRFM)

• “To create a vibrant, interdisciplinary community where we can all learn 
from each other and do things that would otherwise be impossible.”

• https://crfm.stanford.edu

• Course:
- "Advances in Foundation Models”

- Winter 2023

©2022 Carlos Guestrin

mailto:https://crfm.stanford.edu
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Coming next…
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Reinforcement Learning

n Observe:
¨ State x
¨ Action a
¨ Reward r

n Learning goal:
¨ Policy: x → a

n To maximize accumulated reward
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