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Feature selection task




Why might you want to perform
feature selection?
Efficiency:

- If size(w) = 100B, each prediction is expensive
- |f W sparse , computation only depends on # of non-zeros

Yi =Z W, hj(xi) R—

w;#0

Interpretability:
- Which features are relevant for prediction?



Lot size

Single Family

Year built

Last sold price

Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqgft
# floors

Flooring types
Parking type
Parking amount
Cooling

Heating

Exterior materials
Roof type
Structure style
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Sparsity: Housing application

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System
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Sparsity: Reading your mind

—

very happy

very sad

Activity in which brain

regions can predict
happiness?
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Explaining Prediction

.i

“Why should | trust you?”: Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16
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Option 1: All subsets or greedy variants




Find best model of for each size

# bedrooms

# bathrooms
sq.ft. living
sq.ft. lot

floors

year built

> year renovated
waterfront

RSS(W)
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# of features
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Complexity of “all subsets”

Yi=§ [000..00A0Q]
Yi = Woho(x) + g [100..000]
yi = wq hy(x) + g [010..000]
Yi = Woho(x;) + wy he(x) + ¢ [110..000]
Yi = WOhO(Xi) + Wy hl(Xi) + ...+ Wp hD(Xi)+ & [1 11 ... 11 1]
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—

28 = 256
230 =1,073,741,824
21000 = 1.071509 x 1030t

Typically,

computationally
infeasible
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Greedy algorithms

Forward stepwise:
Starting from simple model and iteratively add features most useful to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as
Important

Lots of other variants, too.
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Option 2: Reqgularize
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Ridge regression: L, regularized regression

Total cost =

measure of fit,+|>\ measure of magnitude of Coeffi'cients
i

I
R>5{w) W] B=wg2+...+wp?
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Coefficient path — ridge
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Using regularization for feature selection

Instead of searching over a discrete set of solutions, can
we use regularization?
- Start with full model (all possible features)

- "Shrink” some coefficients exactly to O
* i.e., knock out certain features

— Non-zero coefficients indicate “selected” features
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Thresholding ridge coefficients?

Why don't we just set small ridge coefficients to 0?

..............................................................................
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Thresholding ridge coefficients?

Selected features for a given threshold value
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Thresholding ridge coefficients?

Let's look at two related features...

Nothing measuring bathrooms was included!

©2022 Carlos Guestrin

CS229: Machine Learning



Thresholding ridge coefficients?

If only one of the features had been included...

..............................................................................

o O R C IR\ o (e X X
N NS @ O @@ L ,g@‘
’SX\OQJ 60‘ N 2 N > 6\'Q
18 ©2022 Carlos Guestrin

CS229: Machine Learning



19

Thresholding ridge coefficients?

Would have included bathrooms in selected model

Can regularization lead directly to sparsity?
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Try this cost instead of ridge...

Total cost =
[measure of ﬁt'+ A measure of magnitude of coefficients
I J
T Y
RSS(w) [lwil =|wgl+...+|wp)

Leads to sparse solutions!

Lasso regression

(a.k.a. L, reqularized regression)
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Lasso regression: L, regularized regression

Just like ridge regression, solution is governed by a
continuous parameter A

RSS(w) + Allw||,
~N tuning parameter = balance of fit and sparsity
If A=0:
If A=oo:

If A in between:



Coefficient path — ridge
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Coefficient path — lasso
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Intuitive difference between Lasso and Ridge
RSS(w) RSS(W) + Allwl]5 RSS(w) + Allwll;

W2 4 W2 A WZ 4
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Practical concerns with lasso
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Debiasing lasso

Lasso shrinks coefficients
relative to LS solution

- more bias, less variance

Can reduce bias as follows:

1. Run lasso to select
features

2. Run least squares
regression with only
selected features

‘Relevant” features no longer
shrunk relative to LS fit of
same reduced model

True coefficients (D=4096, non-zero = 160)

HNNIHTHHH%I i :'u Wﬂw W

L1 reconstruction (non-zero = 1024, MSE = 0.0072)
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Debiased (hon-zero = 1024, MSE = 3.26e-005)
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Least squares (non-zero = 0, MSE = 1.568)
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Figure used with permission of Mario Figueiredo
(captions modified to fit course)
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Issues with standard lasso objective

1. With group of highly correlated features, lasso tends to select amongst
them arbitrarily
- Often prefer to select all together

2. Often, empirically ridge has better predictive performance than lasso,
but lasso leads to sparser solution

Elastic net aims to address these issues
- hybrid between lasso and ridge regression
- uses Ly and L, penalties

See Zou & Hastie ‘05 for further discussion
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Summary for feature selection

and lasso regression
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Impact of feature selection and lasso

Lasso has changed machine learning,
statistics, & electrical engineering

But, for feature selection in general, be careful about
Interpreting selected features

- selection only considers features included
— sensitive to correlations between features

- result depends on algorithm used
- there are theoretical guarantees for lasso under certain conditions
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What you can do now...

« Describe "all subsets” and greedy variants for feature selection
* Analyze computational costs of these algorithms
* Formulate lasso objective

« Describe what happens to estimated lasso coefficients as tuning
parameter A is varied

* Interpret lasso coefficient path plot
« Contrast ridge and lasso regression
* Implement K-fold cross validation to select lasso tuning parameter A
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