Clustering: Grouping Related Docs

CS229: Machine Learning Carlos Guestrin Stanford University Slides include content developed by and co-developed with Emily Fox

©2022 Carlos Guestrir

Motivating clustering approaches

Goal: Structure documents by topic

Discover groups (*clusters*) of related articles

Why might clustering be useful?

Learn user preferences

Set of clustered documents read by user

©2022 Carlos Guestrin

CS229: Machine Learning

What if some of the labels are known?

Training set of labeled docs

©2022 Carlos Guestrin

CS229: Machine Learning

Clustering

No labels provided ...uncover cluster structure from input alone

Input: docs as vectors \mathbf{x}_i Output: cluster labels \mathbf{z}_i

An unsupervised learning task

What defines a cluster?

Cluster defined by center & shape/spread

Assign observation x_i (doc) to cluster k (topic label) if

- Score under cluster k is higher than under others
- For simplicity, often define score as distance to cluster center (ignoring shape)

Hope for unsupervised learning

10

Other (challenging!) clusters to discover...

Other (challenging!) clusters to discover...

k-means

Assume

-Score= distance to cluster center (smaller better)

14

0. Initialize cluster centers

$$\mu_1, \mu_2, \ldots, \mu_k$$

- 0. Initialize cluster centers
- 1. Assign observations to closest cluster center

$$z_i \leftarrow \arg\min_j ||\mu_j - \mathbf{x}_i||_2^2$$

Inferred label for obs i, whereas supervised learning has given label y_i

- O. Initialize cluster centers
- 1. Assign observations to closest cluster center
- 2. Revise cluster centers as mean of assigned observations

$$\mu_j = \frac{1}{n_j} \sum_{i: z_i = j} \mathbf{x}_i$$

- O. Initialize cluster centers
- 1. Assign observations to closest cluster center
- 2. Revise cluster centers as mean of assigned observations
- 3. Repeat 1.+2. until convergence

Why does K-means work???

- What's k-means optimizing?
- Does it always converge?

What is k-means optimizing?

• Potential function $F(\mu, \mathbf{z})$ of centers μ and point allocations \mathbf{z} :

• Optimal k-means:

Does K-means converge??? Part 1

Optimize potential function:

$$\min_{\mu} \min_{\mathbf{z}} F(\mu, \mathbf{z}) = \min_{\mu} \min_{\mathbf{z}} \sum_{j=1}^{N} \|\mu_{z_i} - x_i\|_{2}^{2}$$

• Fix μ and minimize z:

Does K-means converge??? Part 2

Optimize potential function:

$$\min_{\mu} \min_{\mathbf{z}} F(\mu, \mathbf{z}) = \min_{\mu} \min_{\mathbf{z}} \sum_{j=1}^{N} \|\mu_{z_i} - x_i\|_{2}^{2}$$

• Fix **z** and minimize μ :

Coordinate descent algorithms

$$\min_{\mu} \min_{\mathbf{z}} F(\mu, \mathbf{z}) = \min_{\mu} \min_{\mathbf{z}} \sum_{j=1}^{N} \|\mu_{z_{i}} - x_{i}\|_{2}^{2}$$

- Want: min_a min_b F(a,b)
- Coordinate descent:
 - fix a, minimize b
 - fix b, minimize a
 - repeat
- Converges!!!
 - if F is bounded
 - to a (often good) local optimum
 - as we saw in applet (play with it!)
 - (For LASSO it converged to the global optimum, because of convexity)

K-means is a coordinate descent algorithm!

Clustering images

- For search, group as:
 - Ocean
 - Pink flower
 - Dog
 - Sunset
 - Clouds
 - **–** ...

Limitations of k-means

Assign observations to closest cluster center

Can use weighted Euclidean, but requires *known* weights

Only center matters

Equivalent to assuming spherically symmetric clusters

Still assumes all clusters have the same axis-aligned ellipses

CS229: Machine Learning

Failure modes of k-means

different shaped/oriented clusters

What you can do now...

- Describe the input (unlabeled observations) and output (labels) of a clustering algorithm
- Determine whether a task is supervised or unsupervised
- Cluster documents using k-means
- Describe potential applications of clustering