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Motivating clustering approaches
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Goal: Structure documents by topic

Discover groups (clusters) of related articles 
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SPORTS WORLD NEWS
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Why might clustering be useful?
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I don’t just 
like sports!
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Learn user preferences
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Cluster 1

Cluster 3 Cluster 4

Cluster 2
Use feedback 
to learn user 
preferences 
over topics

Set of clustered documents read by user
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Clustering: An unsupervised learning task
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What if some of the labels are known?

Training set of labeled docs
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SPORTS WORLD NEWS

ENTERTAINMENT SCIENCE
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Clustering

No labels provided
…uncover cluster structure 
from input alone

Input: docs as vectors xi

Output: cluster labels zi
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An unsupervised 
learning task
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What defines a cluster?

Assign observation xi (doc) 
to cluster k (topic label) if
- Score under cluster k is 

higher than under others
- For simplicity, often define 

score as distance to cluster 
center (ignoring shape)
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Cluster defined by center & shape/spread
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Hope for unsupervised learning

Easy

Impossible

In between
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Other (challenging!) clusters to discover…
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Other (challenging!) clusters to discover…
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k-means: A clustering algorithm
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k-means 

Assume 
-Score= distance to 

cluster center
(smaller better)

©2022 Carlos Guestrin

DATA 
to 

CLUSTER
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k-means algorithm 

0.  Initialize cluster centers

1. Assign observations to 
closest cluster center

2. Revise cluster centers as 
mean of assigned 
observations 

3. Repeat 1.+2. until 
convergence
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µ1, µ2, . . . , µk
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k-means algorithm 

0.  Initialize cluster centers

1. Assign observations to 
closest cluster center

2. Revise cluster centers as 
mean of assigned 
observations 

3. Repeat 1.+2. until 
convergence
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zi  argmin
j

||µj � xi||22

Inferred label for obs i, whereas 
supervised learning has given label yi
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k-means algorithm 

0.  Initialize cluster centers

1. Assign observations to 
closest cluster center

2. Revise cluster centers 
as mean of assigned 
observations 

3. Repeat 1.+2. until 
convergence
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µj =
1

nj

X

i:zi=j

xi
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k-means algorithm 

0.  Initialize cluster centers

1. Assign observations to 
closest cluster center

2. Revise cluster centers 
as mean of assigned 
observations 

3. Repeat 1.+2. until 
convergence
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Why does K-means work???

• What’s k-means optimizing? 

• Does it always converge? 

©2022 Carlos Guestrin
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What is k-means optimizing?

• Potential function F(µ,z) of centers µ and point 
allocations z:

• Optimal k-means:
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Does K-means converge??? Part 1
• Optimize potential function:

min
!
min
𝒛
𝐹(𝜇, 𝒛) = min

!
min
𝒛
+
#$%

&

𝜇'! − 𝑥( )
)

• Fix µ and minimize z:
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Does K-means converge??? Part 2
• Optimize potential function:

min
!
min
𝒛
𝐹(𝜇, 𝒛) = min

!
min
𝒛
+
#$%

&

𝜇'! − 𝑥( )
)

• Fix z and minimize µ:
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Coordinate descent algorithms

• Want: mina minb F(a,b)
• Coordinate descent:

- fix a, minimize b

- fix b, minimize a
- repeat

• Converges!!!
- if F is bounded

- to a (often good) local optimum 
• as we saw in applet (play with it!)

- (For LASSO it converged to the global 
optimum, because of convexity)

• K-means is a coordinate descent algorithm!
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Summary for k-means
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Clustering images

• For search, group as:
-Ocean

- Pink flower

-Dog

- Sunset

-Clouds

- …

©2022 Carlos Guestrin
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Limitations of k-means

©2022 Carlos Guestrin

Assign observations to closest cluster center

Revise cluster centers as mean of assigned 
observatvergence

zi  argmin
j

||µj � xi||22

Can use weighted Euclidean, 
but requires known weights

Equivalent to assuming
spherically symmetric clusters

Still assumes all clusters have
the same axis-aligned ellipses

Only center matters
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Failure modes of k-means
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disparate cluster sizes overlapping clusters different 
shaped/oriented 
clusters
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What you can do now…
• Describe the input (unlabeled observations) and output (labels) 

of a clustering algorithm

• Determine whether a task is supervised or unsupervised

• Cluster documents using k-means

• Describe potential applications of clustering
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