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The Ethics of AI

• Thus far, we focused on methods and techniques

• But, the systems we build impact people, everyday
• The ethics of AI focuses on the principles and methods 

to help ensure our systems reflect our values
- There are social, political and legal implications
• But, we’ll focus on methods for the next two lectures

• Much more too learn
- See CS281 – Ethics of AI in Spring 2022
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Are Emily and Greg More Employable than Lakisha and 
Jamal? [Bertrand & Mullainathan ‘03]
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ML-based system for recruiting

• Could decrease this bias…

• But, could also amplify biases… 
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Ethical Concerns of Artificial Intelligence
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The most challenging ethical 
questions in AI are bound by 
nuanced complex tradeoffs 
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Privacy and 
Survaillance
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Opacity of 
Predictions
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Biased Decisions
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Ads can be annoying… 
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Ads can represent opportunity… 

• Ads targeted (using ML) based on 
predicted features of users…

• Some users don’t get the 
“opportunity” of the ad… 
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Manipulation of 
Behavior
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“It will be almost as 
convenient to search 
for some bit of truth 
concealed in nature 
as it will be to find 
it hidden away in an 
immense multitude of 
bound volumes.”

- Denis Diderot, 1755
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Automation and 
Employment
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https://www.youtube.com/watch
?v=4sEVX4mPuto
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Decisions by Proxy
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https://xkcd.com/1613/
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https://www.youtube.com/watch
?v=Mme2Aya_6Bc
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Existential Risk
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Focus of Next 2 Lectures
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• Fairness and algorithmic bias

• Explainability

• Privacy
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AI Ethics: 
Fairness & Algorithmic Bias
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Regulated Domains

• Credit (Equal Credit Opportunity Act)

• Education (Civil Rights Act of 1964; Education Amendments of 
1972)

• Employment (Civil Rights Act of 1964)

• Housing (Fair Housing Act)

• ‘Public Accommodation’ (Civil Rights Act of 1964)
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Legally-Recognized Protected Classes in the 
US
Race (Civil Rights Act of 1964); Color (Civil Rights Act of 
1964); Sex (Equal Pay Act of 1963; Civil Rights Act of 
1964); Religion (Civil Rights Act of 1964);National origin (Civil 
Rights Act of 1964); Citizenship (Immigration Reform and 
Control Act); Age (Age Discrimination in Employment Act of 
1967);Pregnancy (Pregnancy Discrimination Act); Familial 
status (Civil Rights Act of 1968); Disability 
status (Rehabilitation Act of 1973; Americans with Disabilities 
Act of 1990); Veteran status (Vietnam Era Veterans' 
Readjustment Assistance Act of 1974; Uniformed Services 
Employment and Reemployment Rights Act); Genetic 
information (Genetic Information Nondiscrimination Act)
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Sources of Bias
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Sources of Bias: Human Bias

• Data reflects human decisions and biases

• Example: ML for Hiring decisions
-Data from previous hiring decisions perpetuates existing 

biases

-Could reduce bias by measuring employee success
• Harder to measure and institutional biases can impact success 
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Sources of Bias: Negative Feedback Loops

• Data collected in biased fashion
-Negative feedback loop: future observations confirm 

predictions and reduce further contradicting evidence

• Example: Allocation of police attention based on 
prevalence of crime
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Sources of Bias: Sample Size Disparity

• Models for minority group may be less accurate, if less 
data is used

• Example: Race representation in medical studies
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Sources of Bias: Unreliable Data

• If data from minority groups is less reliable or less 
informative
-Models may be less accurate for minority groups

- (Beneficial) interventions may less available to minority 
groups

• Examples:
- Inaccurate census in predominantly minority neighborhoods 

-Medical interventions with limited diagnostic tools
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Sources of Bias: Proxies

• Even if sensitive attributes (e.g., gender or race) are not used by model, 
there may be other proxy features that are correlated with sensitive 
attributes 

• Example: Redlining in loan and insurance applications
- https://www.npr.org/sections/thetwo-

way/2016/10/19/498536077/interactive-redlining-map-zooms-in-on-
americas-history-of-discrimination

- https://www.npr.org/2017/05/03/526655831/a-forgotten-history-of-how-
the-u-s-government-segregated-america
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Mitigating Bias at Every Stage

• Problem definition

• Data collection

• Model development

• Model evaluation

• Use of predictions in practice

• Feedback loops
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How do we measure fairness?
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Consider a loan application…

• x – features of applicant (address, credit history,…)
• c – sensitive features of applicant (gender, race,…)
• d – decision (loan approved or denied) 
• y – (hidden) true target in decision (will this person pay the loan)

• Shorthand probability notation: 

• “Perfect” predictor:

©2022 Carlos Guestrin



CS229: Machine Learning44

Fairness through Unawareness 

• Definition: 

• Desirable properties: 

• Criticisms: 
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Three Important Fairness Criteria

• Independence

• Separation

• Sufficiency 
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All these criteria are achievable…

• Techniques include:
- Pre-processing

-Changing training procedure

- Post-processing
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1. Independence 

• Definition: Decision d independent of sensitive features c

• A.k.a. demographic parity: Probability of loan approved is 
the same across sensitive attributes
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Independence: Desirable Properties

• Simple

• Some legal support

• In some settings, can increase representation, e.g., in admissions 
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Independence: Shortcomings

• Ignores possible correlations between y and c
- Precludes perfect predictor d=y

• Laziness: quality of decision doesn’t need to be 
uniformly good between groups

©2022 Carlos Guestrin



CS229: Machine Learning50

2. Separation

• Definition: decision d and sensitive features c
conditionally independent given true target y
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Variant of Separation: False negative rate parity

• Probability of loan denied for a deserving applicant is 
the same across sensitive attributes
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Separation: Confusion Matrix Interpretation 
(Equalized Odds, Equal Opportunity) 
• Separation:

• Confusion matrix:

• Variants: 
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Separation: Desirable Properties

• Optimality compatibility 

• Incentivize to reduce errors equally across groups
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Separation: Shortcomings

• Can amplify disparities
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3. Sufficiency

• Definition: decision variable d is sufficient to predict 
target y, independently of sensitive features c

• Equivalently, predictive rate parity:
- Positive predictive rate:

-Negative predictive rate:  
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Sufficiency: Desirable Properties

• Optimality compatibility: 

• Equal chance of success, given acceptance: 
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Sufficiency: Shortcomings

• Also can amplify disparities
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All these criteria are achievable…

• Techniques include:
- Pre-processing

-Changing training procedure

- Post-processing
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Trade-offs are Inevitable
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Tradeoff Between Fairness and Accuracy
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Accuracy vs demographic parity [Zafar et al. AISTATS2017]

Tradeoff Between Group-Specific Performance and Average-Case Performance
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Impossibility Result

• Independence, Separation & Sufficiency are reasonable 
criteria

• Theorem: Any two of these is mutually exclusive!!
- Except for degenerate cases
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Trade-offs are necessary!

• Choose a criteria, instead of others?
-Which one?

• Choose a balance between criteria?

• Very general issue in fairness and ML
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What are we teaching our models?
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ML perpetuates stereotypes… 
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The choice of data defines 
decisions of ML model
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These biases show up in ML…
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And, it’s not just about diversity or 
coverage in the data we collect… Must ensure all development decisions

reflect values we want the model to exhibit 
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If >50% of doctors are male in the dataset, 
all instances of “doctor” translated to male form 
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If >50% of doctors are male in the dataset, 
all instances of “doctor” translated to male form 

Even with infinite and representative data, 
this issue will not be resolved
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AI Ethics is about considering the 
consequences of every decision we make in 

the ML system

Even with infinite and representative data, 
this issue will not be resolved


