AI Ethics: Explainability of Machine Learning

CS229: Machine Learning Carlos Guestrin Stanford University

©2022 Carlos Guestrir

Three Waves of the Rise in Opioid Overdose Deaths

The Pain Was Unbearable. So Why Did Doctors Turn Her Away?

A sweeping drug addiction risk algorithm has become central to how the US handles the opioid crisis. It may only be making the crisis worse.

to the hospital in excruciating pain.

A 32-year-old psychology grad student in Michigan, Kathryn lived with endometriosis, an agonizing condition that causes uterine-like cells to abnormally develop in the wrong

©2022 Carlos Guestrin

ML Models More and More Complex

©2022 Carlos Guestrin

When is a model ready to deploy? Hard to understand when models are working (for the right reasons) and not working!!

Isn't test accuracy enough?

A User Study on Test Accuracy

"Why should I trust you?": Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16 ©2022 Carlos Guestrin CS229: Machine Learn

Train a neural network to predict wolf v. husky

Husky

Wolf

Train a neural network to predict wolf v. husky

Explanations for neural network prediction

Test accuracy may not capture critical issues

- Bad data
- Biases
- Poor performance in critical cases

. . .

Examining Models

©2022 Carlos Guestrin

Debugging is One Reason to Examine Models

- Examining models:
 - Why a model makes particular predictions
 - What alternative predictions are possible
 - How robust/stable are predictions
 - What data supports predictions
- Examining models for debugging: discover bad, unexpected or unstable behavior
 - Typically not discovered by accuracy in train/test data

Examining Models to Detect Algorithmic Bias

- Evaluate multiple fairness criteria
- Verify how/if decisions depend on sensitive features
- Discover what groups are privileged/disadvantaged by predictions

Examine Models for Recourse

- In opioid overdose risk case, patient deemed risky had no way to discover why

 Or how to fix bad data
- Understanding why could enable individuals to:
 - Address data issues
 - Change their actions to change outcomes

Score Summary as of 11/18/2020 Where You Stand

The Equifax Credit Score™ ranges from 280-850. Higher scores are viewed more favorably

Your 3 credit scores are calculated by Equifax using the information contained in your Equifax, Experian, and TransUnion credit reports.

Equifax & Experian & TransUnion: Your score is considered excellent. Based on this score, you should be able to qualify for some of the lowest interest rates available and a wide variety of competitive credit offers should be available to you.

Learn more in Understanding Your Score

					EFX EXP TU
					-
Range	280 - 559 Poor	560 - 659 Fair	660 - 724 Good	725 - 759 Very Good	760 - 850 Excellent
US Population	12%	21%	18%	12%	37%

What's Impacting Your Scores

Below are the key areas from these credit reports that are impacting your scores. About Credit Scores

EQUIFAX	Experian	TransUnion	
Payment History Your history of payir	ng bills on time.		
Very Good	Very Good	Excellent	
Amount of Debt Your total amount of	outstanding debt.		
Excellent	Excellent	Excellent	
Length of Credit History How long ye	ou've had credit	Eventions	
Good	Good	Excellent	
Amount of New Credit Your recent cr	redit history of new loans or applications.	•	
Very Good	Very Good	Very Good	
Type of Credit The various types of cr	redit accounts that you have.		
Poor	Poor	Poor	

©2022 Carlos Guestrin

CS229: Machine Learning

Print this Report & Score

Interpretable Models vs Post-hoc Explanations

©2022 Carlos Guestrin

CS229: Machine Learning

17

Interpretability in ML

Giving humans a **mental model** of the machine's model behavior

Learning Interpretable Models (c.f., Lethan & Rudin 2015)

Image credit: Lakkaraju, Adebayo, Singh NeurIPS 2020 Tutorial

Accuracy vs Interpretability

Post-hoc Explanations

• Given a (huge, complex) model, provide human explanations for predictions

Predicted: wolf True: wolf

©2022 Carlos Guestrin

LIME: Local, Interpretable Model-Agnostic Explanations

Why should I trust you?": Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16

Model agnostic+ Ignore any internal structure

Explaining predictions lobal decision may be very complicat

Explaining predictions cally, decision looks simpler...

Explaining prediction/sery locally, decision looks linear

"Why should I trust you?": Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16

Explaining prediction/sery locally, decision looks linear

LIME: Learn locally sparse linear model around each prediction

"Why should I trust you?": Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16

LIME – Key Ideas

1. Pick a model class interpretable by humans

- Locally approximate global (blackbox) model
 - Simple model globally bad, but locally good

Sparse linear Explanations

- 1. Sample points around x_i
- 2. Use complex model to predict labels for each sample
- 3. Weigh samples according to distance to x_i
- 4. Learn new simple model on weighted samples
- 5. Use simple model to explain

Interpretable representations

©2022 Carlos Guestrin

Interpretable representation: images

Explaining prediction of Inception Neural Network

P(**•••**) = 0.24

CS229: Machine Learning

Achieving target metric may not be enough

Atheism vs Christianity posts (Newsgroups data, circa 1995)

LIME applied to 20 newsgroups

Achieving target metric may not be enough

Fixing bad classifiers

©2022 Carlos Guestrin

©2022 Carlos Guestrin

Did explanations help with wolf problem?

More Examples

©2022 Carlos Guestrir

LIME: Learn locally sparse linear model around each prediction

"Why should I trust you?": Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16

Anchors: Sufficient Conditions

Conditions under which classifier makes same prediction

Anchors: High-Precision Model-Agnostic Explanations. Ribeiro, Singh & G. AAAI 18 CS229: Machine Learning

Salary Prediction

-	Feature	Value		
	Age	$37 < \mathrm{Age} \leq 48$		
	Workclass	Private		
	Education	\leq High School		
	Marital Status	Married		
	Occupation	Craft-repair		
	Relationship	Husband		Salarv \leq \$50K
	Race	Black		
	Sex	Male		
	Capital Gain	0		
	Capital Loss	0	Model	
	Hours per week	≤ 40		
	Country	United States		

Salary Prediction: LIME vs Anchors

Anchors for Images: Classification

Prediction: Beagle

Anchor for Beagle

Anchors for Visual Question Answering

What is the mustache made of?	Banana

Anchors for Visual Question Answering

What is the mustache made of?	Banana
What is the ground made of?	Banana
What is the hair made of?	Banana
What is the picture of?	Banana
What was the head of the US?	Banana

How many bananas are in the picture?	2
How many are in the picture?	2
How many people in the picture?	2
Are there many animals in the picture?	2
How many is too many?	2

Adversarial Bug Discovery

Find closest input with different prediction

Oversensitivity in image classification

"Panda"

"Gibbon"

Adversary not distinguishable by human → Unlikely to be a real-world issue (except for attacks)

Explaining and Harnessing Adversarial Examples. Goodfellow, Shlens & Szegedy 2015

STOP

What type of road sign is shown? Which type of road sign is shown?

STOP Do not enter

The biggest city on the river Rhine is Cologne, Germany with a population of more than 1,050,000 people. It is the second-longest river in Central and Western Europe, at about 1,230 km.

How long is the Rhine? How long is the Rhine??

Goal: Find semantically-equivalent adversarial examples

Semantically Equivalent Adversarial Rules for Debugging NLP Models. Ribeiro, Singh & G. ACL 18 CS229: Machine Learning

Semantically-equivalent

Use paraphrasing model [Lapata et al. 2017]

Adversarial

Changes correct model prediction

What color is the tray?	Pink
What colour is the tray?	Green
Which color is the tray?	Green
What color is it ?	Green
What color is the tray?	Pink
How color is the tray?	Green

Semantically Equivalent Adversarial Rules for Debugging NLP Models. Ribeiro, Singh & G. ACL 18 CS229: Machine Learning

Closing the Loop with Simple Data

Augment by applying validated SEARs to training data

Typical challenges with explainability methods

- Explanations to simplistic
- Not focused on information needs for task
- Unstable
- Not causal
- ...