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ML Models More and More Complex
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When is a model ready to deploy?
Hard to understand when models are working 
(for the right reasons) and not working!!
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Isn’t test accuracy enough?

©2022 Carlos Guestrin



CS229: Machine Learning

A User Study on Test Accuracy
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“Why should I trust you?”: Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 167
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Train a neural network to predict wolf v. husky

Husky Wolf
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Train a neural network to predict wolf v. husky
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Explanations for neural network prediction
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Test accuracy may not capture critical issues

• Bad data

• Biases

• Poor performance in critical cases

• …
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Examining Models
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Debugging is One Reason to Examine Models

• Examining models:
-Why a model makes particular predictions

-What alternative predictions are possible

-How robust/stable are predictions

-What data supports predictions

• Examining models for debugging: discover bad, 
unexpected or unstable behavior 
- Typically not discovered by accuracy in train/test data

©2022 Carlos Guestrin
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Examining Models to Detect Algorithmic Bias

• Evaluate multiple fairness criteria

• Verify how/if decisions depend on sensitive features

• Discover what groups are privileged/disadvantaged by 
predictions

©2022 Carlos Guestrin
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Examine Models for 
Recourse
• In opioid overdose risk case, 

patient deemed risky had no 
way to discover why
-Or how to fix bad data

• Understanding why could 
enable individuals to:
- Address data issues
-Change their actions to 

change outcomes 

©2022 Carlos Guestrin
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Interpretable Models vs Post-hoc Explanations

©2022 Carlos Guestrin17



CS229: Machine Learning

Interpretability in ML
Giving humans a mental model of 
the machine’s model behavior
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Learning Interpretable Models (c.f., Lethan & Rudin 2015)

Image credit: Lakkaraju, Adebayo, Singh NeurIPS 2020 Tutorial
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Accuracy vs Interpretability

Interpretability

Accuracy
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Post-hoc Explanations

• Given a (huge, complex) model, provide human 
explanations for predictions
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LIME: Local, Interpretable Model-Agnostic 
Explanations 

22 ©2022 Carlos Guestrin
“Why should I trust you?”: Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16
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→ Ignore any internal structureModel agnostic

X1 > 0.5

X2 > 0.5
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Global decision may be very complicatedExplaining predictions
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Locally, decision looks simpler… Explaining predictions
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Very locally, decision looks linearExplaining predictions

“Why should I trust you?”: Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16



CS229: Machine Learning

Explaining predictions

LIME: Learn locally sparse linear model around 
each prediction

“Why should I trust you?”: Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16

Very locally, decision looks linear
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LIME – Key Ideas
1. Pick a model class interpretable 

by humans

2. Locally approximate global 
(blackbox) model
- Simple model globally bad, 

but locally good
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Sparse linear Explanations

1. Sample points around xi
2. Use complex model to predict labels 

for each sample
3. Weigh samples according 

to distance to xi
4. Learn new simple model

on weighted samples
5. Use simple model to explain

©2022 Carlos Guestrin



CS229: Machine Learning30

Interpretable representations

x (embeddings)

0.5 0.3 1.3 4.4 1.1 ...

x' (words)

This is a horrible movie.
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Interpretable representation: images

x' (contiguous superpixels)x (3 color channels  / pixel)
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Explaining prediction of Inception Neural Network 

P(           )  = 0.21  P(             )  = 0.24  P(             )  = 0.32  
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Achieving target metric may not be 
enough

Atheism vs Christianity posts
(Newsgroups data, circa 1995)

94% accuracy!!!
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Appear in 21% of 
training examples, 
almost always in
Atheism

LIME applied to 20 newsgroups

Appears in 11% of training
examples, always in atheism

Model 00.250.50.751

Atheism

Christianit
y

Prediction Prob.

LIME

-0.5-0.250 0.250.5

Christianity

Posting

Host

Keith

From: Keith Jones
Subject: Christianity is the answer
NTTP-Posting-Host: x.x.com

I think Christianity is the one true religion.
If you’d like to know more, send me a note
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Achieving target metric may not be 
enough

Atheism vs Christianity posts
(Newsgroups data, circa 1995)

94% accuracy!!!

Predictions due to 
email addresses, names,… 

Test on recent data:
Only 57% accuracy! 
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Fixing bad classifiers
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Did explanations help with wolf problem?
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More Examples
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LIME: Learn locally sparse linear model around each 
prediction

“Why should I trust you?”: Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16
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Conditions under which classifier makes same prediction

Anchors: Sufficient Conditions

Anchors: High-Precision Model-Agnostic Explanations. Ribeiro, Singh & G. AAAI 18
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Salary Prediction

Model

Salary ≤  $50K
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Salary Prediction: LIME vs Anchors

Model

Salary ≤  $50K

LIME

-0.5-0.25 0 0.250.5

Capital Gain = 0

Education <= High…

Hours per Week <= 40

Marital Status = Married

37 < Age <= 48

Salary ≤ $50k Salary > $50k

IF Education < High School
Then 
P(prediction = < 50K) > 0.95

Anchor
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Anchors for Images: Classification

Prediction: Beagle Anchor for Beagle
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Anchors for Visual Question Answering

What is the mustache made of? Banana

How many bananas are in the picture? 2
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Anchors for Visual Question Answering

What is the mustache made of? Banana

What is the ground made of? Banana

What is the hair made of? Banana
What is the picture of? Banana
What was the head of the US? Banana

How many bananas are in the picture? 2

How many are in the picture? 2

How many people in the picture? 2
Are there many animals in the picture? 2
How many is too many? 2
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Find closest input with different prediction
Adversarial Bug Discovery
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Oversensitivity in image classification 

“Panda”

+   ε

“Gibbon”

=

Adversary not distinguishable by human
→ Unlikely to be a real-world issue (except for attacks)

Explaining and Harnessing Adversarial Examples. Goodfellow, Shlens & Szegedy 2015
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What type of 
road sign is shown? STOP

How long is 
the Rhine? 1,230 km

The biggest city on the river 
Rhine is Cologne, Germany 
with a population of more than 
1,050,000 people. It is the 
second-longest river in Central 
and Western Europe, at about 
1,230 km.
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What type of 
road sign is shown? STOP

How long is 
the Rhine? 1,230 km

The biggest city on the river 
Rhine is Cologne, Germany 
with a population of more than 
1,050,000 people. It is the 
second-longest river in Central 
and Western Europe, at about 
1,230 km.

Which type of 
road sign is shown? Do not enter

How long is 
the Rhine??

More than 
1,050,000



CS229: Machine Learning

Goal: Find semantically-equivalent 
adversarial examples

Semantically Equivalent Adversarial Rules for Debugging NLP Models. Ribeiro, Singh & G. ACL 18



CS229: Machine LearningSemantically Equivalent Adversarial Rules for Debugging NLP Models. Ribeiro, Singh & G. ACL 18

Adversarial

+

Use paraphrasing model 
[Lapata et al. 2017]

Changes correct 
model prediction

What color is the tray? Pink
What colour is the tray? Green
Which color is the tray? Green
What color is it? Green
What color is the tray? Pink
How color is the tray? Green

Semantically-equivalent
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Augment by applying validated SEARs to training data

Closing the Loop with Simple Data 

Augmentation
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Typical challenges with explainability
methods
• Explanations to simplistic

• Not focused on information needs for task

• Unstable

• Not causal

• …
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