
CS229: Machine Learning

Decision Trees

©2022 Carlos Guestrin

CS229: Machine Learning
Carlos Guestrin
Stanford University
Slides include content developed by and co-developed with 
Emily Fox



CS229: Machine Learning

Predicting potential loan defaults
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What makes a loan risky?
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I want a to buy 
a new house! Credit History 

★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★

Loan 
Application
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Credit history explained

©2022 Carlos Guestrin

Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★

Did I pay previous 
loans on time?

Example:
excellent, good, or 
fair
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Income
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Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★

What’s my income?

Example:
$80K per year
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Loan terms

©2022 Carlos Guestrin

Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★

How soon do I need to 
pay the loan?

Example: 3 years,    
5 years,…
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Personal information
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Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★

Age, reason for the 
loan, marital status,…

Example: Home loan 
for a married couple
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Classifier review
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Loan 
Application

Classifier
MODEL

Input:  xi

Output: ŷ
Predicted 
class

Safe

ŷi = +1 

Risky

ŷi = -1 



CS229: Machine Learning10

This module ... decision trees
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Start

Credit?

Safe

excellent

Income?

poor

Term?

Risky Safe

fair

5 years3 years

Risky

Low

Term?

Risky Safe

high

5 years3 years
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Scoring a loan application
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xi = (Credit = poor, Income = high, Term = 5 years)

Credit?

Safe Term?

Risky Safe

Income?

Term?

Risky Safe

Risky

Start

excellent poor

fair

5 years3 years
Lowhigh

5 years3 years

Credit?

Safe Term?

Risky Safe

Income?

Term?

Risky Safe

Risky

Start

excellent poor

fair

5 years3 years
Lowhigh

5 years3 years

ŷi = Safe
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Decision tree learning task
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Decision tree learning problem
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Optimize 
quality metric
on training data

Training data: N observations (xi,yi)

Credit Term Income y

excellent 3 yrs high safe

fair 5 yrs low risky

fair 3 yrs high safe

poor 5 yrs high risky

excellent 3 yrs low risky

fair 5 yrs low safe

poor 3 yrs high risky

poor 5 yrs low safe

fair 3 yrs high safe

T(X)
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Quality metric: Classification error

• Error measures fraction of mistakes

- Best possible value : 0.0 

-Worst possible value: 1.0

©2022 Carlos Guestrin

Error =  # incorrect predictions 
# examples
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How do we find the best tree?
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Exponentially large number of possible 
trees makes decision tree learning hard!

T1(X) T2(X) T3(X)

T4(X) T5(X) T6(X)

Learning the smallest 
decision tree is an 
NP-hard problem 
[Hyafil & Rivest ’76]
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Greedy decision tree learning
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Our training data table

©2022 Carlos Guestrin

Assume N = 40, 3 features

Credit Term Income y

excellent 3 yrs high safe

fair 5 yrs low risky

fair 3 yrs high safe

poor 5 yrs high risky

excellent 3 yrs low risky

fair 5 yrs low safe

poor 3 yrs high risky

poor 5 yrs low safe

fair 3 yrs high safe
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(all data)

Start with all the data
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Loan status:    Safe   Risky

N = 40 examples

# of Safe loans

22
# of Risky loans

18
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Root
22 18

Compact visual notation: Root node
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Loan status:    Safe   Risky

N = 40 examples

# of Safe loans

# of Risky loans
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Decision stump: Single level tree
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Root
22 18

Loan status:
Safe Risky

poor
4 14

fair
9 4

excellent
9 0

Credit?

Split on Credit

Subset of data with 
Credit = excellent

Subset of data with 
Credit = fair

Subset of data with 
Credit = poor
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Visual notation: Intermediate nodes
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Root
22 18

excellent
9 0

fair
9 4

poor
4 14

Loan status:
Safe Risky

Credit?

Intermediate nodes
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Making predictions with a decision stump
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root
22 18

excellent
9 0

fair
9 4

poor
4 14

Loan status:
Safe  Risky

credit?
For each intermediate node, 
set ŷ = majority value

Safe Safe Risky
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Selecting best feature to split on
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How do we learn a decision stump?
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Root
22 18

excellent
9 0

fair
9 4

poor
4 14

Loan status:
Safe Risky

Credit?

Find the “best” 
feature to split on!
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How do we select the best feature?
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Root
22 18

excellent
9 0

fair
9 4

poor
4 14

Loan status:
Safe  Risky

Credit?

Choice 1: Split on Credit

Root
22 18

3 years
16 4

5 years
6 14

Loan status:
Safe  Risky

Term?

Choice 2: Split on Term

OR
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How do we measure effectiveness of a split?
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Error =  # mistakes 
# data points

Root
22 18

poor
4 14

Loan status:
Safe  Risky

Credit?

excellent
9 0

fair
9 4

Idea: Calculate classification error 
of this decision stump
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Calculating classification error
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• Step 1: ŷ = class of majority of data in node

• Step 2: Calculate classification error of predicting ŷ
for this data

Root
22 18

Loan status:
Safe  Risky Error = .

=
18 mistakes22 correct

ŷ = majority class

Safe Tree Classification error

(root) 0.45
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Choice 1: Split on Credit history?
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Does a split on Credit reduce 
classification error below 0.45?

Root
22 18

excellent
9 0

fair
9 4

poor
4 14

Loan status:
Safe  Risky

Credit?

Choice 1: Split on Credit
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Split on Credit: Classification error
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Root
22 18

excellent
9 0

fair
9 4

poor
4 14

Loan status:
Safe  Risky

Credit?

0 mistakes 4 mistakes 4 mistakes

Safe Safe Risky

Choice 1: Split on Credit

Error = .

=

Tree Classification error

(root) 0.45

Split on credit 0.2
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Choice 2: Split on Term?
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Root
22 18

3 years
16 4

5 years
6 14

Loan status:
Safe  Risky

Term?

Safe Risky

Choice 2: Split on Term
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Evaluating the split on Term
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Root
22 18

3 years
16 4

5 years
6 14

Loan status:
Safe  Risky

Term?

4 mistakes 6 mistakes

Safe Risky

Error = .

=

Tree Classification error

(root) 0.45

Split on credit 0.2

Split on term 0.25

Choice 2: Split on Term
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Choice 1 vs Choice 2:
Comparing split on 
Credit vs Term
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Root
22 18

excellent
9 0

fair
8 4

poor
4 14

Loan status:
Safe  Risky

Root
22 18

3 years
16 4

5 years
6 14

Loan status:
Safe  Risky

ORCredit? Term?

Tree Classification 
error

(root) 0.45

split on credit 0.2

split on loan term 0.25

WINNER

Choice 2: Split on TermChoice 1: Split on Credit
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Feature split selection algorithm
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• Given a subset of data M (a node in a tree)

• For each feature hi(x):

1. Split data of M according to feature hi(x)

2. Compute classification error of split

• Chose feature h*(x) with lowest classification error
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Recursion & Stopping conditions
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We’ve learned a decision stump, what next?

©2022 Carlos Guestrin

Root
22 18

excellent
9 0

fair
9 4

poor
4 14

Loan status:
Safe Risky

Credit?

Safe
All data points are Safe è
nothing else to do with this subset of data

Leaf node
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Tree learning = Recursive stump learning
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Root
22 18

excellent
9 0

fair
9 4

poor
4 14

Loan status:
Safe Risky

Credit?

Safe
Build decision stump 
with subset of data 

where Credit = poor

Build decision stump 
with subset of data 
where Credit = fair
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Second level
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Root
22 18

Loan status:
Safe Risky

Credit?

excellent
9 0

fair
9 4

poor
4 14

Safe

3 years
0 4

5 years
9 0

Term?

Risky Safe

Build another stump
these data points

high
4 5

Low
0 9

Income?

Risky
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Final decision tree
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Root
22 18

excellent
9 0

Fair
9 4

poor
4 14

Loan status:
Safe Risky

Credit?

Safe

5 years
9 0

3 years
0 4

Term?

Risky Safe

low
0 9

high
4 5

Income?

5 years
4 3

3 years
0 2

Term?

Risky Safe

Risky
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Simple greedy decision tree learning

Pick best feature to split on

Learn decision stump with this split

For each leaf of decision stump, 
recurse

©2022 Carlos Guestrin

When do we stop???
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Stopping condition 1: All data agrees on y
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Root
22 18

excellent
9 0

Fair
9 4

poor
4 14

Loan status:
Safe Risky

Credit?

Safe

5 years
9 0

3 years
0 4

Term?

Risky Safe

low
0 9

high
4 5

Income?

5 years
4 3

Term?

Risky Safe

Risky

3 years
0 2

3 years
0 2

All data in these 
nodes have same 

y value è
Nothing to do

excellent
9 0

5 years
9 0

3 years
0 4

low
0 9
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Stopping condition 2: Already split on all features
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Root
22 18

excellent
9 0

Fair
9 4

poor
4 14

Loan status:
Safe Risky

Credit?

Safe

5 years
9 0

3 years
0 4

Term?

Risky Safe

low
0 9

high
4 5

Income?

5 years
4 3

Term?

Risky Safe

Risky

3 years
0 2

Already split on all 
possible features 

è
Nothing to do

5 years
4 3



CS229: Machine Learning42

Recursion

Stopping 
conditions 
1 & 2

Greedy decision tree learning
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• Step 1: Start with an empty tree

• Step 2: Select a feature to split data

• For each split of the tree:

• Step 3: If nothing more to do,           
make predictions

• Step 4: Otherwise, go to Step 2 & 
continue (recurse) on this split

Pick feature split 
leading to lowest 
classification error
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Is this a good idea?

Proposed stopping condition 3:
Stop if no split reduces the

classification error

©2022 Carlos Guestrin
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Stopping condition 3: 
Don’t stop if error doesn’t decrease???
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y values
True False

Root
2 2

Error = .

=

Tree Classification error

(root) 0.5  

x[1] x[2] y
False False False

False True True

True False True

True True False

y = x[1] xor x[2]
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Consider split on x[1]
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y values
True False

Root
2 2

Error = .

=

Tree Classification error

(root) 0.5

Split on x[1] 0.5

True
1 1

False
1 1

x[1]

x[1] x[2] y
False False False

False True True

True False True

True True False

y = x[1] xor x[2]
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Consider split on x[2]
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y values
True False

Root
2 2

Error = 1+1   .
2+2

= 0.5

Tree Classification error

(root) 0.5

Split on x[1] 0.5

Split on x[2] 0.5

True
1 1

False
1 1

x[2]

Neither features
improve training error… 
Stop now???

x[1] x[2] y
False False False

False True True

True False True

True True False

y = x[1] xor x[2]
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Final tree with stopping condition 3

©2022 Carlos Guestrin

Tree Classification 
error

with stopping 
condition 3

0.5

y values
True False

Root
2 2

Predict True

x[1] x[2] y
False False False

False True True

True False True

True True False

y = x[1] xor x[2]
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Without stopping condition 3
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y values
True False

Root
2 2

True
1 1

False
1 1

x[1]

True
0 1

x[2]

True
1 0

False
1 0

x[2]

False
0 1

True FalseFalse True

Tree Classification 
error

with stopping 
condition 3

0.5

without stopping 
condition 3

x[1] x[2] y
False False False

False True True

True False True

True True False

y = x[1] xor x[2]

Condition 3 (stopping when training error doesn’t’ improve) is not recommended!
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Decision tree learning: 
Real valued features
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How do we use real values inputs?
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Income Credit Term y

$105 K excellent 3 yrs Safe

$112 K good 5 yrs Risky

$73 K fair 3 yrs Safe

$69 K excellent 5 yrs Safe

$217 K excellent 3 yrs Risky

$120 K good 5 yrs Safe

$64 K fair 3 yrs Risky

$340 K excellent 5 yrs Safe

$60 K good 3 yrs Risky
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Threshold split
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Root
22 18

Loan status:
Safe Risky

Split on the feature Income

< $60K
8 13

>= $60K
14 5

Income?

Subset of data with 
Income >= $60K
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Finding the best threshold split
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Infinite possible 
values of t

Income <  t* Income >= t*

Safe
Risky

Income

$120K$10K

Income = t*
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Consider a threshold between points
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Safe
Risky

Income

$120K$10K

vA vB

Same classification error for any 
threshold split between vA and vB
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Only need to consider mid-points
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Safe
Risky

Income

$120K$10K

Finite number of 
splits to consider
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Threshold split selection algorithm 
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• Step 1: Sort the values of a feature hj(x) : 

Let {v1, v2, v3, … vN} denote sorted values

• Step 2:

- For i = 1 … N-1 

• Consider split ti = (vi + vi+1) / 2

• Compute classification error for treshold split hj(x) >= ti
-Chose the t* with the lowest classification error
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Visualizing the threshold split
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0 10 20 30 40 …

$0K

$40K

$80K

…

Age

Income Threshold split is the line Age = 38
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Split on Age >= 38
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Age

Income age >= 38age < 38

Predict Safe

Predict Risky

0 10 20 30 40 …

$0K

$40K

$80K

…
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Depth 2: Split on Income >= $60K
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Age

Income

0 10 20 30 40 …

$0K

$40K

$80K

…

Threshold split is the line Income = 60K
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Each split partitions the 2-D space
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Age

Age >= 38

Income >= 60KAge < 38

Age >= 38

Income < 60K

Income

0 10 20 30 40 …

$0K

$40K

$80K

…
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Decision trees vs logistic regression:
Example
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Logistic regression
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Feature Value
Weight 
Learned

h0(x) 1 0.22

h1(x) x[1] 1.12

h2(x) x[2] -1.07
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Depth 1: Split on x[1]
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Root
18 13

x[1] >= -0.07
4 11

x[1] < -0.07
13 3

x[1]

y values
- +
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Depth 2
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Root
18 13

x[1] < -0.07
13 3

x[1] >= -0.07
4 11

x[1]

x[1] < -1.66
7 0

x[1] >= -1.66
6 3

x[1]

x[2] < 1.55
1 11

x[2] >=  1.55 
3 0

x[2]

y values
- +
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Threshold split caveat
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For threshold splits, 
same feature can 
be used multiple 
times

Root
18 13

x[1] < -0.07
13 3

x[1] >= -0.07
4 11

x[1] < -1.66
7 0

x[1] >= -1.66
6 3

x[2] < 1.55
1 11

x[2] >=  1.55 
3 0

x[1]

x[1] x[2]

y values
- +
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Decision boundaries
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Depth 1                                      Depth 2                               Depth 10
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Comparing decision boundaries
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Logistic Regression

Decision Tree

Degree 2 featuresDegree 1 features

Depth 3Depth 1 Depth 10

Degree 6 features
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Summary of decision trees
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What you can do now

• Define a decision tree classifier

• Interpret the output of a decision trees

• Learn a decision tree classifier using greedy algorithm

• Traverse a decision tree to make predictions
-Majority class predictions

• Tackle continuous and discrete features

©2022 Carlos Guestrin


