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Overfitting in decision trees
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Tree depth depth = 1 depth = 2 depth = 3 depth = 5 depth = 10

Training error 0.22 0.13 0.10 0.03 0.00

Decision 
boundary
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Training error reduces with depth

What happens when we increase depth?
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Two approaches to picking simpler trees
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1. Early Stopping:
Stop the learning algorithm before tree becomes too complex

2. Pruning:
Simplify the tree after the learning algorithm terminates 
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Technique 1: Early stopping

• Stopping conditions (recap):

1. All examples have the same target value

2. No more features to split on

• Early stopping conditions:

1. Limit tree depth (choose max_depth using validation set)

2. Do not consider splits that do not cause a sufficient decrease in 
classification error

3. Do not split an intermediate node which contains too few data points
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Challenge with early stopping condition 1
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Hard to know exactly when to stop

Also, might want 
some branches of 
tree to go deeper
while others 
remain shallow
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Early stopping condition 2: Pros and Cons

• Pros:

- A reasonable heuristic for early stopping to avoid useless 
splits

• Cons:

- Too short sighted: We may miss out on “good” splits may 
occur right after “useless” splits

- Saw this with “xor” example
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Two approaches to picking simpler trees
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1. Early Stopping:
Stop the learning algorithm before tree becomes too complex

2. Pruning:
Simplify the tree after the learning algorithm terminates 

Complements early stopping
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Pruning: Intuition
Train a complex tree, simplify later
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Complex Tree

Simplify

Simpler Tree
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Pruning motivation
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Scoring trees: Desired total quality format

Want to balance:

i. How well tree fits data

ii. Complexity of tree

Total cost =

measure of fit + measure of complexity
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want to balance



CS229: Machine Learning20

Simple measure of complexity of tree
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Start
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bad
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L(T) = # of leaf nodes
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Balance simplicity & predictive power

Credit?

Term?

Risky

Start

fair

3 years

Safe

Safe

Income?

Term?

Risky Safe

Risky

excellent poor

5 years
lowhigh

5 years3 years

Risky

Start

Too complex, risk of overfitting

Too simple, high 
classification error
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Balancing fit and complexity

Total cost C(T) = Error(T) + λ L(T) 
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tuning parameter

If λ=0:

If λ=∞: 

If λ in between: 
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Tree pruning algorithm
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Step 1: Consider a split

©2022 Carlos Guestrin

Credit?

Term?

Risky

Start

fair

3 years

Safe

Safe

Income?

Risky

excellent poor

5 years
lowhigh

Term?

Risky Safe

5 years3 years

Tree T

Candidate for 
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Step 2: Compute total cost C(T) of split
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Credit?
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Safe

Income?

Risky

excellent poor

5 years
lowhigh C(T) = Error(T) + λ L(T) 

Tree Error #Leaves Total

T 0.25 6 0.43

λ= 0.3

Tree T

Term?
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Step 2: “Undo” the splits on Tsmaller
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Replace split 
by leaf node?

Tree Tsmaller

C(T) = Error(T) + λ L(T) 

Tree Error #Leaves Total

T 0.25 6 0.43

Tsmaller 0.26 5 0.41

λ= 0.3
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Credit?

Term?

Risky

Start

fair

3 years

Safe

Safe

Income?

Safe Risky

excellent poor

5 years
lowhigh

Prune if total cost is lower: C(Tsmaller) ≤ C(T) 

Replace split 
by leaf node?

Tree Tsmaller

C(T) = Error(T) + λ L(T) 

Tree Error #Leaves Total

T 0.25 6 0.43

Tsmaller 0.26 5 0.41

λ= 0.3

Worse training error but 
lower overall cost

YES!
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Step 5: Repeat Steps 1-4 for every split
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Decide if each split 
can be “pruned”
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Summary of overfitting in 
decision trees
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What you can do now…

• Identify when overfitting in decision trees
• Prevent overfitting with early stopping
- Limit tree depth
- Do not consider splits that do not reduce classification error
- Do not split intermediate nodes with only few points

• Prevent overfitting by pruning complex trees
- Use a total cost formula that balances classification error and 

tree complexity
- Use total cost to merge potentially complex trees into simpler 

ones
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