

Decision Trees:

Overfitting

CS229: Machine Learning Carlos Guestrin Stanford University

Slides include content developed by and co-developed with Emily Fox

Overfitting in decision trees

What happens when we increase depth?

Training error reduces with depth

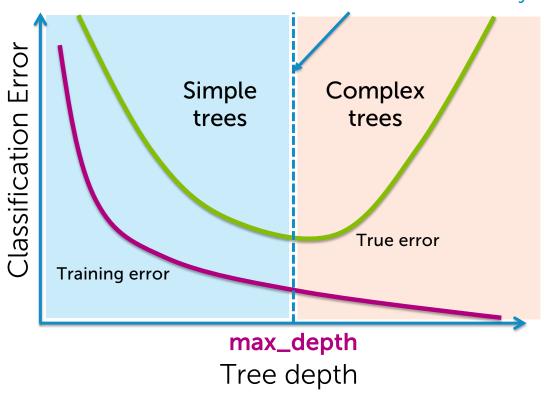
Tree depth	depth = 1	depth = 2	depth = 3	depth = 5	depth = 10
Training error	0.22	0.13	0.10	0.03	0.00
Decision boundary	1	1 1 2 3 X[1]	4 3 2 1 1 X 0 -1 -2 -3-5 -4 -3 -2 -1 0 1 2 3	2 1 1 1 2 1 2 3 1 1 2 3 3 5 -4 -3 -2 -1 0 1 2 3	2 2 2 1 1 2 2 3 0 -1 -2 -3 -5 -4 -3 -2 -1 0 1 2 3

Two approaches to picking simpler trees

1. Early Stopping:

Stop the learning algorithm **before** tree becomes too complex

2. Pruning:


Simplify the tree after the learning algorithm terminates

Technique 1: Early stopping

- Stopping conditions (recap):
 - 1. All examples have the same target value
 - 2. No more features to split on
- Early stopping conditions:
 - 1. Limit tree depth (choose max_depth using validation set)
 - 2. Do not consider splits that do not cause a sufficient decrease in classification error
 - 3. Do not split an intermediate node which contains too few data points

Challenge with early stopping condition 1

Hard to know exactly when to stop

Also, might want some branches of tree to go deeper while others remain shallow

14

Early stopping condition 2: Pros and Cons

Pros:

 A reasonable heuristic for early stopping to avoid useless splits

• Cons:

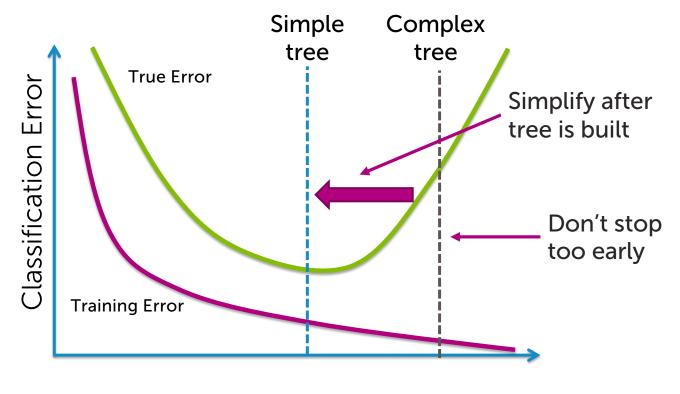
- Too short sighted: We may miss out on "good" splits may occur right after "useless" splits
- Saw this with "xor" example

Two approaches to picking simpler trees

1. Early Stopping:

Stop the learning algorithm before tree becomes too complex

2. Pruning:


Simplify the tree after the learning algorithm terminates

Complements early stopping

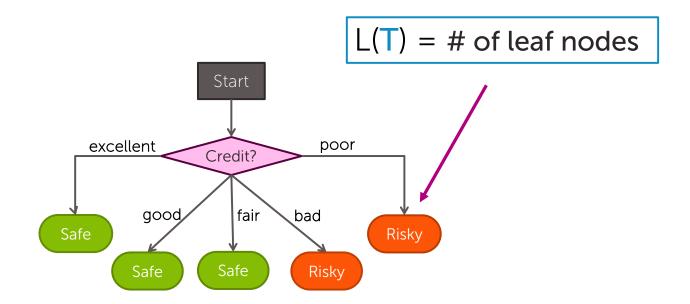
Pruning: *Intuition*Train a complex tree, simplify later

Complex Tree Simpler Tree

Pruning motivation

Tree depth

Scoring trees: Desired total quality format


Want to balance:

- i. How well tree fits data
- ii. Complexity of tree

Total cost = want to balance

measure of fit + measure of complexity

Simple measure of complexity of tree

Balance simplicity & predictive power

Too complex, risk of overfitting Start excellent poor Credit? fair Income? Term? Safe high low 3 years 5 years Safe Term? Risky Risky 3 years 5 years Safe Risky 21 ©2022 Carlos Guestrin

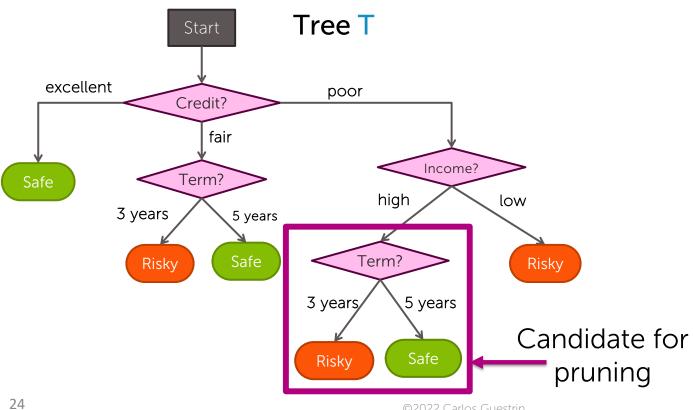
Too simple, high classification error

CS229: Machine Learning

Balancing fit and complexity

Total cost
$$C(T) = Error(T) + \lambda L(T)$$

tuning parameter


If
$$\lambda = 0$$
:

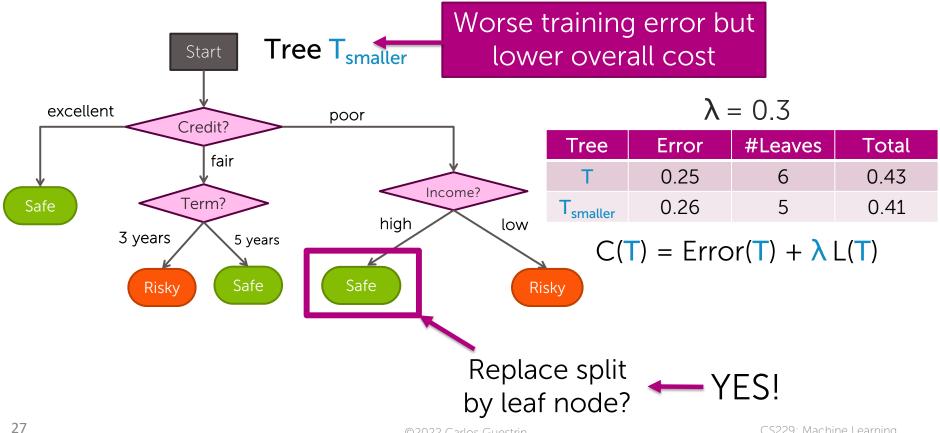
If
$$\lambda = \infty$$
:

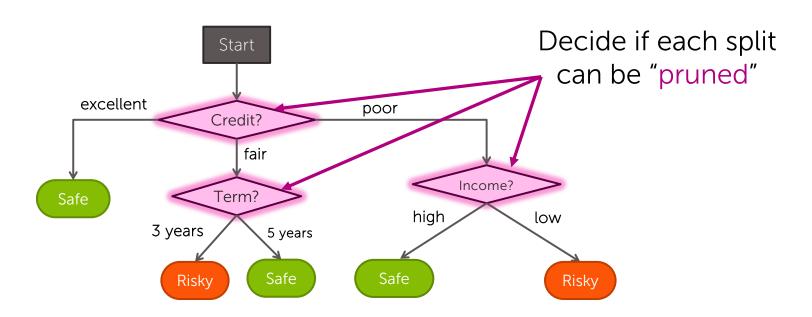
If λ in between:

Tree pruning algorithm ©2022 Carlos Guestrin CS229: Machine Learning

Step 1: Consider a split

CS229: Machine Learning ©2022 Carlos Guestrin


Step 2: Compute total cost C(T) of split


Step 2: "Undo" the splits on Tsmaller

Prune if total cost is lower: $C(T_{smaller}) \le C(T)$

Step 5: Repeat Steps 1-4 for every split

Summary of overfitting in decision trees

CS229: Machine Learning

What you can do now...

- Identify when overfitting in decision trees
- Prevent overfitting with early stopping
 - Limit tree depth
 - Do not consider splits that do not reduce classification error
 - Do not split intermediate nodes with only few points
- Prevent overfitting by pruning complex trees
 - Use a total cost formula that balances classification error and tree complexity
 - Use total cost to merge potentially complex trees into simpler ones