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Note: Basics as Recap

This review assumes basic background in probability (events, sample space, probability
axioms etc.) and focuses on concepts useful to CS229 and to machine learning in general.

CS229 Probability Review Spring 2022 Nandita Bhaskhar 3 / 49



Basics Random Variables Expectation-Variance Joint Distributions Covariance RV Conditionals Random Vectors Multivariate Gaussian End

Definitions, Axioms, and Corollaries

Performing an experiment → outcome
Sample Space (S): set of all possible outcomes of an experiment
Event (E): a subset of S (E ⊆ S)
Probability (Bayesian definition)

A number between 0 and 1 to which we ascribe meaning
i.e. our belief that an event E occurs

Frequentist definition of probability

P(E ) = lim
n→∞

n(E )

n
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Axiom 1: 0 ≤ P(E ) ≤ 1
Axiom 2: P(S) = 1
Axiom 3: If E and F are mutually exclusive (E ∩ F = ∅), then P(E ) + P(F ) = P(E ∪ F )
Corollary 1: P(EC ) = 1 − P(E ) ( = P(S)− P(E ))
Corollary 2: E ⊆ F , then P(E ) ≤ P(F )
Corollary 3: P(E ∪ F ) = P(E ) + P(F )− P(EF ) (Inclusion-Exclusion Principle)
General Inclusion-Exclusion Principle:

P

(
n⋃

i=1

Ei

)
=

n∑
r=1

(−1)r+1
∑

i1<···<ir

P(Ei1Ei2 ...Eir )

Equally Likely Outcomes: Define S as a sample space with equally likely outcomes. Then

P(E ) =
|E |
|S |
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Conditional Probability and Bayes’ Rule

For any events A,B such that P(B) ̸= 0, we define:

P(A | B) := P(A ∩ B)

P(B)

Let’s apply conditional probability to obtain Bayes’ Rule!

P(B | A) = P(B ∩ A)

P(A)
=

P(A ∩ B)

P(A)

=
P(B)P(A | B)

P(A)

Conditioned Bayes’ Rule: given events A,B,C ,

P(A | B,C ) =
P(B | A,C )P(A | C )

P(B | C )
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Law of Total Probability

Let B1, ...,Bn be n disjoint events whose union is the entire sample space. Then, for any event A,

P(A) =
n∑

i=1

P(A ∩ Bi )

=
n∑

i=1

P(A | Bi )P(Bi )

We can then write Bayes’ Rule as:

P(Bk | A) = P(Bk)P(A | Bk)

P(A)

=
P(Bk)P(A | Bk)∑n
i=1 P(A | Bi )P(Bi )
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Law of Total Probability

Treasure chest A holds 100 gold coins. Treasure chest B holds 60 gold and 40 silver coins.
Choose a treasure chest uniformly at random, and pick a coin from that chest uniformly at
random. If the coin is gold, then what is the probability that you chose chest A? 1

Solution:

P(A | G ) =
P(A)P(G | A)

P(A)P(G | A) + P(B)P(G | B)

=
0.5 × 1

0.5 × 1 + 0.5 × 0.6
= 0.625

1Question based on slides by Koochak & Irvin
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Chain Rule

For any n events A1, ...,An, the joint probability can be expressed as a product of conditionals:

P(A1 ∩ A2 ∩ ... ∩ An)

= P(A1)P(A2 | A1)P(A3 | A2 ∩ A1)...P(An | An−1 ∩ An−2 ∩ ... ∩ A1)
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Independence

Events A,B are independent if

P(AB) = P(A)P(B)

We denote this as A ⊥ B .

From this, we know that if A ⊥ B ,

P(A | B) = P(A ∩ B)

P(B)
=

P(A)P(B)

P(B)
= P(A)

Implication: If two events are independent, observing one event does not change the probability
that the other event occurs.
In general: events A1, ...,An are mutually independent if

P(
⋂
i∈S

Ai ) =
∏
i∈S

P(Ai )

for any subset S ⊆ {1, ..., n}.
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Random Variables

A random variable X is a variable that probabilistically takes on different values. It maps
outcomes to real values
X takes on values in Val(X ) ⊆ R or Support Sup(X )

X = k is the event that random variable X takes on value k

Discrete RVs:
Val(X ) is a set
P(X = k) can be nonzero

Continuous RVs:
Val(X ) is a range
P(X = k) = 0 for all k . P(a ≤ X ≤ b) can be nonzero.

CS229 Probability Review Spring 2022 Nandita Bhaskhar 12 / 49
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Probability Mass Function (PMF)

Given a discrete RV X , a PMF maps values of X to probabilities.

pX (x) := p(x) := P(X = x)

For a valid PMF,
∑

x∈Val(x) pX (x) = 1.
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Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a probability (i.e. R → [0, 1])

FX (a) := F (a) := P(X ≤ a)

A CDF must fulfill the following:
limx→−∞ FX (x) = 0
limx→∞ FX (x) = 1
If a ≤ b, then FX (a) ≤ FX (b) (i.e. CDF must be nondecreasing)

Also note: P(a ≤ X ≤ b) = FX (b)− FX (a).

CS229 Probability Review Spring 2022 Nandita Bhaskhar 14 / 49
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Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

fX (x) := f (x) :=
dFX (x)

dx

Thus,

P(a ≤ X ≤ b) = FX (b)− FX (a) =

∫ b

a
fX (x)dx

A valid PDF must be such that
for all real numbers x , fX (x) ≥ 0.∫∞
−∞ fX (x)dx = 1
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Expectation

Let g be an arbitrary real-valued function.
If X is a discrete RV with PMF pX :

E[g(X )] :=
∑

x∈Val(X )

g(x)pX (x)

If X is a continuous RV with PDF fX :

E[g(X )] :=

∫ ∞

−∞
g(x)fX (x)dx

Intuitively, expectation is a weighted average of the values of g(x), weighted by the probability
of x .
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Properties of Expectation

For any constant a ∈ R and arbitrary real function f :
E[a] = a

E[af (X )] = aE[f (X )]

Linearity of Expectation
Given n real-valued functions f1(X ), ..., fn(X ),

E[
n∑

i=1

fi (X )] =
n∑

i=1

E[fi (X )]

Law of Total Expectation
Given two RVs X ,Y :

E[E[X | Y ]] = E[X ]

N.B. E[X | Y ] =
∑

x∈Val(x) xpX |Y (x |y) is a function of Y .
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Example of Law of Total Expectation

El Goog sources two batteries, A and B , for its phone. A phone with battery A runs on average
12 hours on a single charge, but only 8 hours on average with battery B . El Goog puts battery A
in 80% of its phones and battery B in the rest. If you buy a phone from El Goog, how many
hours do you expect it to run on a single charge?

Solution: Let L be the time your phone runs on a single charge. We know the following:
pX (A) = 0.8, pX (B) = 0.2,
E[L | A] = 12, E[L | B] = 8.

Then, by Law of Total Expectation,

E[L] = E[E[L | X ]] =
∑

X∈{A,B}

E[L | X ]pX (X )

= E[L | A]pX (A) + E[L | B]pX (B)
= 12 × 0.8 + 8 × 0.2 = 11.2

CS229 Probability Review Spring 2022 Nandita Bhaskhar 19 / 49
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Variance

The variance of a RV X measures how concentrated the distribution of X is around its mean.

Var(X ) := E[(X − E[X ])2]

= E[X 2]− E[X ]2

Interpretation: Var(X ) is the expected deviation of X from E[X ].
Properties: For any constant a ∈ R, real-valued function f (X )

Var [a] = 0
Var [af (X )] = a2Var [f (X )]
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Example Distributions

Distribution PDF or PMF Mean Variance

Bernoulli(p)

{
p, if x = 1
1 − p, if x = 0. p p(1 − p)

Binomial(n, p)
(
n
k

)
pk(1 − p)n−k for k = 0, 1, ..., n np np(1 − p)

Geometric(p) p(1 − p)k−1 for k = 1, 2, ... 1
p

1−p
p2

Poisson(λ) e−λλk

k! for k = 0, 1, ... λ λ

Uniform(a, b) 1
b−a for all x ∈ (a, b) a+b

2
(b−a)2

12

Gaussian(µ, σ2) 1
σ
√

2π
e−

(x−µ)2

2σ2 for all x ∈ (−∞,∞) µ σ2

Exponential(λ) λe−λx for all x ≥ 0, λ ≥ 0 1
λ

1
λ2
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Joint and Marginal Distributions

Joint PMF for discrete RV’s X ,Y :

pXY (x , y) = P(X = x ,Y = y)

Note that
∑

x∈Val(X )

∑
y∈Val(Y ) pXY (x , y) = 1

Marginal PMF of X , given joint PMF of X ,Y :

pX (x) =
∑
y

pXY (x , y)
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Joint and Marginal Distributions

Joint PDF for continuous X ,Y :

fXY (x , y) =
δ2FXY (x , y)

δxδy

Note that
∫∞
−∞

∫∞
−∞ fXY (x , y)dxdy = 1

Marginal PDF of X , given joint PDF of X ,Y :

fX (x) =

∫ ∞

−∞
fXY (x , y)dy
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Joint and Marginal Distributions for Multiple RVs

Joint PMF for discrete RV’s X1, ...,Xn:

p(x1, ..., xn) = P(X1 = x1, ...,Xn = xn)

Note that
∑

x1

∑
x2
...
∑

xn
p(x1, ..., xn) = 1

Marginal PMF of X1, given joint PMF of X1, ...,Xn:

pX1(x1) =
∑
x2

...
∑
xn

p(x1, ..., xn)
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Joint and Marginal Distributions for Multiple RVs

Joint PDF for continuous RV’s X1, ...,Xn:

f (x1, ..., xn) =
δnF (x1, ...xn)

δx1δx2...δxn

Note that
∫
x1

∫
x2
...
∫
xn
f (x1, ..., xn)dx1...dxn = 1

Marginal PDF of X1, given joint PDF of X1, ...,Xn:

fX1(x1) =

∫
x2

...

∫
xn

f (x1, ..., xn)dx2...dxn
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Expectation for multiple random variables

Given two RV’s X ,Y and a function g : R2 → R of X ,Y ,

for discrete X ,Y :

E[g(X ,Y )] :=
∑

x∈Val(x)

∑
y∈Val(y)

g(x , y)pXY (x , y)

for continuous X ,Y :

E[g(X ,Y )] :=

∫ ∞

−∞

∫ ∞

−∞
g(x , y)fXY (x , y)dxdy

These definitions can be extended to multiple random variables in the same way as in the
previous slide. For example, for n continuous RV’s X1, ..,Xn and function g : Rn → R:

E[g(X )] =

∫ ∫
...

∫
g(x1, ..., xn)fX1,...,Xn(x1, ..., xn)dx1, ..., dxn
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Covariance

Intuitively: measures how much one RV’s value tends to move with another RV’s value.

For
RV’s X ,Y :

Cov [X ,Y ] := E [(X − E[X ])(Y − E[Y ])]

= E[XY ]− E[X ]E[Y ]

If Cov [X ,Y ] < 0, then X and Y are negatively correlated
If Cov [X ,Y ] > 0, then X and Y are positively correlated
If Cov [X ,Y ] = 0, then X and Y are uncorrelated

CS229 Probability Review Spring 2022 Nandita Bhaskhar 29 / 49



Basics Random Variables Expectation-Variance Joint Distributions Covariance RV Conditionals Random Vectors Multivariate Gaussian End

Covariance

Intuitively: measures how much one RV’s value tends to move with another RV’s value. For
RV’s X ,Y :

Cov [X ,Y ] := E [(X − E[X ])(Y − E[Y ])]

= E[XY ]− E[X ]E[Y ]

If Cov [X ,Y ] < 0, then X and Y are negatively correlated
If Cov [X ,Y ] > 0, then X and Y are positively correlated
If Cov [X ,Y ] = 0, then X and Y are uncorrelated

CS229 Probability Review Spring 2022 Nandita Bhaskhar 29 / 49



Basics Random Variables Expectation-Variance Joint Distributions Covariance RV Conditionals Random Vectors Multivariate Gaussian End

Covariance

Intuitively: measures how much one RV’s value tends to move with another RV’s value. For
RV’s X ,Y :

Cov [X ,Y ] := E [(X − E[X ])(Y − E[Y ])]

= E[XY ]− E[X ]E[Y ]

If Cov [X ,Y ] < 0, then X and Y are negatively correlated
If Cov [X ,Y ] > 0, then X and Y are positively correlated
If Cov [X ,Y ] = 0, then X and Y are uncorrelated

CS229 Probability Review Spring 2022 Nandita Bhaskhar 29 / 49



Basics Random Variables Expectation-Variance Joint Distributions Covariance RV Conditionals Random Vectors Multivariate Gaussian End

Properties Involving Covariance

If X ⊥ Y , then E[XY ] = E[X ]E[Y ]. Thus,

Cov [X ,Y ] = E[XY ]− E[X ]E[Y ] = 0

This is unidirectional! Cov [X ,Y ] = 0 does not imply X ⊥ Y

Variance of two variables:

Var [X + Y ] = Var [X ] + Var [Y ] + 2Cov [X ,Y ]

i.e. if X ⊥ Y , Var [X + Y ] = Var [X ] + Var [Y ].
Special Case:

Cov [X ,X ] = E[XX ]− E[X ]E[X ] = Var [X ]
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Conditional distributions for RVs

Works the same way with RV ’s as with events:
For discrete X ,Y :

pY |X (y |x) =
pXY (x , y)

pX (x)

For continuous X ,Y :

fY |X (y |x) =
fXY (x , y)

fX (x)

In general, for continuous X1, ...,Xn:

fX1|X2,...,Xn
(x1|x2, ..., xn) =

fX1,X2,...,Xn(x1, x2, ..., xn)

fX2,...,Xn(x2, ..., xn)
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Bayes’ Rule for RVs

Also works the same way for RV ’s as with events:
For discrete X ,Y :

pY |X (y |x) =
pX |Y (x |y)pY (y)∑

y ′∈Val(Y ) pX |Y (x |y ′)pY (y ′)

For continuous X ,Y :

fY |X (y |x) =
fX |Y (x |y)fY (y)∫∞

−∞ fX |Y (x |y ′)fY (y ′)dy ′

CS229 Probability Review Spring 2022 Nandita Bhaskhar 33 / 49



Basics Random Variables Expectation-Variance Joint Distributions Covariance RV Conditionals Random Vectors Multivariate Gaussian End

Chain Rule for RVs

Also works the same way as with events:

f (x1, x2, ..., xn) = f (x1)f (x2|x1)...f (xn|x1, x2, ..., xn−1)

= f (x1)
n∏

i=2

f (xi |x1, ..., xi−1)
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Independence for RVs

For X ⊥ Y to hold, it must be that FXY (x , y) = FX (x)FY (y) FOR ALL VALUES of x , y .

Since fY |X (y |x) = fY (y) if X ⊥ Y , chain rule for mutually independent X1, ...,Xn is:

f (x1, ..., xn) = f (x1)f (x2)...f (xn) =
n∏

i=1

f (xi )

(very important assumption for a Naive Bayes classifier!)
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Random Vectors

Given n RV’s X1, ...,Xn, we can define a random vector X s.t.

X =


X1
X2
...
Xn


Note: all the notions of joint PDF/CDF will apply to X .

Given g : Rn → Rm, we have:

g(x) =


g1(x)
g2(x)

...
gm(x)

 ,E[g(X )] =


E[g1(X )]
E[g2(X )]

...
E[gm(X )]
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Covariance Matrices

For a random vector X ∈ Rn, we define its covariance matrix Σ as the n × n matrix whose
ij-th entry contains the covariance between Xi and Xj .

Σ =

Cov [X1,X1] . . . Cov [X1,Xn]
...

. . .
...

Cov [Xn,X1] . . . Cov [Xn,Xn]



applying linearity of expectation and the fact that Cov [Xi ,Xj ] = E[(Xi −E[Xi ])(Xj −E[Xj ])], we
obtain

Σ = E[(X − E[X ])(X − E[X ])T ]

Properties:
Σ is symmetric and PSD
If Xi ⊥ Xj for all i , j , then Σ = diag(Var [X1], ...,Var [Xn])
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Multivariate Gaussian

The multivariate Gaussian X ∼ N (µ,Σ), X ∈ Rn:

p(x ;µ,Σ) =
1

det(Σ)
1
2 (2π)

n
2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

The univariate Gaussian X ∼ N (µ, σ2), X ∈ R is just the special case of the multivariate

Gaussian when n = 1.

p(x ;µ, σ2) =
1

σ(2π)
1
2
exp

(
− 1

2σ2 (x − µ)2
)

Notice that if Σ ∈ R1×1, then Σ = Var [X1] = σ2, and so
Σ−1 = 1

σ2 and det(Σ)
1
2 = σ
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Some Nice Properties of MV Gaussians

Marginals and conditionals of a joint Gaussian are Gaussian

A d-dimensional Gaussian X ∈ N (µ,Σ = diag(σ2
1, ..., σ

2
n)) is equivalent to a collection of d

independent Gaussians Xi ∈ N (µi , σ
2
i ). This results in isocontours aligned with the

coordinate axes.
In general, the isocontours of a MV Gaussian are n-dimensional ellipsoids with principal axes
in the directions of the eigenvectors of covariance matrix Σ (remember, Σ is PSD, so all n
eigenvectors are non-negative). The axes’ relative lengths depend on the eigenvalues of Σ.
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Visualizations of MV Gaussians

Effect of changing variance
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Visualizations of MV Gaussians

If Var [X1] ̸= Var [X2]:
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Visualizations of MV Gaussians

If X1 and X2 are positively correlated:
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Thank you and good luck!

For further reference, consult the following CS229 handouts
Probability Theory Review
The MV Gaussian Distribution
More on Gaussian Distribution

For a comprehensive treatment, see
Sheldon Ross: A First Course in Probability
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Appendix: More on Total Expectation

Why is E[X |Y ] a function of Y ? Consider the following:
E[X |Y = y ] is a scalar that only depends on y .
Thus, E[X |Y ] is a random variable that only depends on Y . Specifically, E[X |Y ] is a
function of Y mapping Val(Y ) to the real numbers.

An example: Consider RV X such that

X = Y 2 + ϵ

such that ϵ ∼ N (0, 1) is a standard Gaussian. Then,
E[X |Y ] = Y 2

E[X |Y = y ] = y2
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Appendix: More on Total Expectation

A derivation of Law of Total Expectation for discrete X ,Y :

E[E[X |Y ]] = E[
∑
x

xP(X = x | Y )] =
∑
y

∑
x

xP(X = x | Y )P(Y = y) (1)

=
∑
y

∑
x

xP(X = x ,Y = y) (2)

=
∑
x

x
∑
y

P(X = x ,Y = y) (3)

=
∑
x

xP(X = x) = E[X ] (4)

where (1) and (4) result from the definition of expectation, (2) results from the definition of
cond. prob., and (3) results from marginalizing out Y .
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Appendix: A proof of Conditioned Bayes Rule

Repeatedly applying the definition of conditional probability, we have:

P(b|a, c)P(a|c)
P(b|c)

=
P(b, a, c)

P(a, c)
· P(a|c)
P(b|c)

=
P(b, a, c)

P(a, c)
· P(a, c)

P(b|c)P(c)

=
P(b, a, c)

P(b|c)P(c)

=
P(b, a, c)

P(b, c)

= P(a|b, c)
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