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Supervised Learning
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Supervised Learning: Recap

e Given: a set of data points (or attributes) {x(1), x(®) ... x(M1 and their associated labels
{y®,y®, ., y(my

o Dimensions: x usually d-dimensional € R?, y typically scalar

e Goal: build a model that predicts y from x for unseen x
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Supervised Learning
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Supervised Learning: Recap

Types of predictions
@ y is continuous, real-valued: Regression
@ Example: Linear regression
@ y is discrete classes: Classification

o Example: Logistic regression, SVM, Naive Bayes
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Supervised Learning
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Supervised Learning: Recap

Types of models
e Discriminative
Directly estimate p(y|x) by learning decision boundary
Example: Logistic regression, SVM
Generative
Models the joint distribution p(x, y)
Estimate p(x|y) and infer p(y|x) from it

Can generate new samples

Example: GDA, Naive Bayes
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Supervised Learning
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Notations and Concepts

o Hypothesis: Denoted by hy. Given an input x(7), predicted output is hy(x(?)
@ Loss Function: Function L(z,y) : R x Y +— R computes how different the predicted value
z and the ground truth label are

Least squared error Logistic loss Hinge loss Cross-entropy
1 5 ylog(z) + (1 — y)log(l
éfyfz)‘ log(1 + exp(—yz)) max (0,1 — yz) ‘ "\|

}
y=-1 y=-1 y=0 1

: "
o + +

yeR y=1 y=1 0 y=1
Linear regression Logistic regression SVM Neural Network
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Supervised Learning
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Notations and Concepts

@ Cost function: Function J taking model parameters € as input and giving a score to reflect
how badly the model performs. Sum of loss over all predictions

m

J(O) =D L(he(x), )

i=1

o Likelihood: Maximizing likelihood L() corresponds to finding the "best" distribution of
data given a set of parameters. We usually find the log likelihood ¢(6) = log L(#) and
maximize it.

0™ = argmaxy £(0)
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Optimization
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Optimization: Gradient Descent

e To find the optimal 6 that minimizes the cost function J(#), we can use gradient descent
with a learning rate o € R
00+ — o) _ v, J(0™)

Stochastic Gradient Descent

@ In Stochastic gradient descent (SGD), we update the parameter based on each training
example, whereas in batch gradient descent we update based on a batch of training
examples.
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Optimization
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Optimization: Newton’s method

@ Numerical method to estimate 6 such that J'() is 0

@ We update 6 as follows:
J(6™)
J//(g(t))

p(t+1) — g(t) _

@ For the multi-dimensional case:

-1
glt+1) — g(t) _ [ng(g(t))} Vo J(01)
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Optimization
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Recap: Gradients and Hessians

o Gradient and Hessian (differentiable function f : RY +— R)

;
_ [of O d

Vif = |8 ... fL] eR

o*f 2f

8x12 T Ox10xy
ViF=| + .. | eRrd

o2f o2f

Dxgdxi T 0x3
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Linear Regression
000

Linear Regression

o Model: hg(x) =0Tx

e Training data: {(x("),y("))}le, x() e R4
o Loss: J(0) =330, (he(x() — y(i))2

o Update rule:

n

SEEVOESY (hg(x(i)) _ y<f)> (0
i=1

Stochastic Gradient Descent (SGD)
Pick one data point x() and then update:

pt+1) — g(t) _ (hg(x(o) _ yu)) (0
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Linear Regression
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Solving Least Squares: Closed Form
o Loss in matrix form: J(0) = & || X6 — y|3, where X € R"™9, y ¢ R”
e Normal Equation (set gradient to 0):
XT(X0*—y)=0

@ Closed form solution: 1
o= (XTx) XTy

Connection to Newton’s Method
0 = [V3J] “1VyJ, when the gradient is evaluated at 6 = 0

Newton's method is exact with only one step iteration if we started from 6(©) = 0.
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Logistic Regression
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Logistic Regression
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Logistic Regression

A binary classification model and y() € {0,1}
@ Assumed model:

8o (x) ify=1 1
10) = . wh . —
py|x0) {1_g6(x) fy—0 " ere gy (x) = gL

o Log-likelihood function:
= Z log p(y!") | x11; )

— Z { log go(x() + (1 — yD) log(1 — gy(x1))

e Find parameters through maximizing log-likelihood, argmax, ¢ () (in Psetl).
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Logistic Regression
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Sigmoid and Softmax

e Sigmoid: The sigmoid function (also known as logistic function) is given by:

1

el =1

@ Softmax regression: Also called as multi-class logistic regression, it generalizes logistic
regression to multi-class cases

exp 0] x

ply = klx;0) = Pl X
>_jexptx
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Exponential Family
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Exponential Family

Definition

Probability distribution with natural or canonical parameter 7, sufficient statistic T(y) and
a log-partition function a(n) whose density (or mass function) can be written as

plyim =b(y)ep (0" T(y)—a(n))
e Oftentimes, T(y) =y

@ In many cases, exp (—a(n)) can be considered as a normalization term that makes the
probabilities sum to one
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Exponential Family
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Common Exponential Distributions

Bernoulli distribution:

p(yid)=¢ (1—¢)" =exp <<|og (&)) y +log (1 - ¢>)>

¢
— b =1 TW) =y w=log({;). al)=tlg(1+e)
More examples:
Categorical distribution, Poisson distribution, Multivariate normal distribution, etc
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Exponential Family
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Common Exponential Distributions

Distribution n T(y) a(n) b(y)
Bernoulli log (%) y log(1 + exp(n)) 1
Gaussian I ] 5'2—) x,% exp (— FE—)

1
Poisson log(A) y el ”
Geometric log(1 — @) y log (195) 1

CS229 Midterm Review Spring 2022 Nandita Bhaskhar 21/39



Exponential Family
[e]e]e]e] ]

Properties

o E[T(Y)in] =Vya(n)

o Var(T(Y);n) = Via(n)
Non-exponential Family Distribution
Uniform distribution over interval [a, b]:

1

p(y;a,b) = b—a 1{a§y§b}

Reason: b(y) cannot depend on parameter 7.
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Generalized Linear Model (GLM)

Generalized Linear Models (GLM) aim at predicting a random variable y as a function of x and
rely on the following components:

Assumed model:

p(y | x;0) ~ ExponentialFamily (1)
°on=0"x
@ Predictor: h(x) =E[T (Y);n] = Vya(n).
o Fitting through maximum likelihood:

CS229 Midterm Review Spring 2022

Nandita Bhaskhar 24 /39



GLMs
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Generalized Linear Model (GLM)

Examples
@ GLM under Bernoulli distribution: Logistic regression
@ GLM under Poisson distribution: Poisson regression (in Psetl)
@ GLM under Normal distribution: Linear regression

@ GLM under Categorical distribution: Softmax regression
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Generative Algorithms
(o] le}

Gaussian Discriminant Analysis (GDA)

Generative Algorithm for Classification

@ Learn p(x|y) and p(y)

o Classify through Bayes rule: argmax, p(y | x) = argmax, p(x | y) p(y)
GDA Formulation

o Assume p(x | y) ~ N (uy, X) for some p, € R? and & € R9*d

e Estimate iy, X and p(y) through maximum likelihood, which is

argmax » [Iog p(x | y D)+ log p(yl ))}
i=1

i1 ly0-y) >im1 1{y(f):y}x(f) 1 :
ply)=—"""ly == =23 D = i) (D = )T
n DY R YT n 4 4
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Generative Algorithms
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Naive Bayes

Formulation

o Assume p(x | y) =11 p(x | y)
e Estimate p(x; | y) and p(y) through maximum likelihood, which gives

27—1 1 Dy (i) E LT s
- H=xj,y\=y i=1 y(’):y
{ J J } . p (y) — { }

Z?I]_ 1{y(i):y} n

p(xily)=
Laplace Smoothing
Assume x; takes value in {1,2,..., k}, the corresponding modified estimator is
1 AP _
—i—E,:l {xj():xj-,y(’):y}

POGly) = —17 ST
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Kernels
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Kernel

Core idea: reparametrize parameter 6 as a linear combination of featurized vectors
Feature map: ¢ : RY —+ RP
Fitting linear model with gradient descent gives us

9= > Bro(x
i=1

Predict a new example z:

hy(2) = Bis(x")T ¢ (2) Z@ ),z
i=1

It brings nonlinearity without much sacrifice in efficiency as long as K (-, ) can be computed
efficiently
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Kernels
[e]e] o]

Kernel

@ Given a feature mapping ¢, we define the kernel K as follows:
K(x,2) = ¢(x)" ¢(2)

o "Kernel trick" to compute the cost function using the kernel because we actually don’t need
to know the explicit mapping ¢, which is often very complicated

@ Instead, only the values K(x, z) are needed
o Suppose K(x(), x)) = Kij

(1) 8} then is K a valid kernel function?

g g} then is K a valid kernel function?

|

|
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Kernel

Theorem
K (x,z) is a valid kernel if and only if for any set of {x(l), .. ,x(”)}, its Gram matrix, defined as
K(x® x®) . K(xW, x()
G — . ) 6 Ran
KM, xM) o K(x(M) x(")

is positive semi-definite.

Examples
e Polynomial kernels: K (x,z) = (x"z+ c)d, Vec>0and deN
2
o Gaussian kernels: K (x,z) = exp (—M) Vo?>0

202
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NNs
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Neural Networks

Input layer Hidden layer 1 Hidden layer k Output layer

By noting  the ith layer of the network and j the jth hidden unit of the layer, we have:

A — i 4l
/A ]

where we note w, b, z the weight, bias and output respectively.
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NNs
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Neural Networks

Multi-layer Fully-connected Neural Networks (with Activation Function f)
PIE) S (W[l]x + b[ll)

Sl — f (le]am i b[2]>

Jr-1 — (W[r—l]a[r—2] + b[r—l])
ho (x) = all = wldalr=1 4 pll
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Activation Functions

Sigmoid Tanh RelU
(2) = — _e-e” () = max(0, =)
g 1+e* g[z)ieﬁ—l—ec 7 ’

1+ 1+ 1+

Leaky RelU

g(z) = max(ez, z)

withe < 1

NNs
000000

B | =
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NNs
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Updating Weights

@ Step 1: Take a batch of training data

@ Step 2: Perform forward propagation to obtain the corresponding loss
@ Step 3: Backpropagate the loss to get the gradients

@ Step 4: Use the gradients to update the weights of the network
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NNs
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Backpropagation
Let J be the loss function and z[Kl = Wkl glk=1] 1 plk] By chain rule, we have
8J 8J o2 8y 8J aJ o  aJ
= ! = a[. ] — = a[l’ 1]T = —
owll gzl awll g5l owll — 9zl »o9plrl 2l
ij i ij i
d, [r] dy
ﬂlzzﬂilzz 0J Wil — 3J1 _ i 9
835.“ ] = azj[r] 83?7 ] = 8zj[r] Halr—1] ozIr]
0J oJ
— sl — (17 5lr] 1 r=11Y) . slr—1]
o= = (W 5 >@f (z ) 5
oJ oJ
Yy S L[ 2] T _ s[r—1]
= w1 o "a © gpr—1 g

Continue for layers r —2,...,1.
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Tips
Practice, practice, practice

For proofs, give reasoning and show how you go from one step to the next

Prepare a cheat sheet — easy to run out of time in open book exams

Pay attention to notation and indices. "Silly mistakes" can completely change the meaning
of your reasoning

@ Think in vector terms!

All the best :) J
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