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Basic Notation

By x ∈ Rn, we denote a vector with n entries.

x =


x1
x2
...
xn


By A ∈ Rm×n we denote a matrix with m rows and n columns, where the entries of A are
real numbers.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =

 | | |
a1 a2 · · · an

| | |

 =


— aT1 —
— aT2 —

...
— aTm —

 .
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The Identity Matrix

The identity matrix , denoted I ∈ Rn×n, is a square matrix with ones on the diagonal and zeros
everywhere else. That is,

Iij =

{
1 i = j
0 i ̸= j

It has the property that for all A ∈ Rm×n,

AI = A = IA.
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Diagonal matrices

A diagonal matrix is a matrix where all non-diagonal elements are 0. This is typically denoted
D = diag(d1, d2, . . . , dn), with

Dij =

{
di i = j
0 i ̸= j

Clearly, I = diag(1, 1, . . . , 1).
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Vector-Vector Product

inner product or dot product

xT y ∈ R =
[
x1 x2 · · · xn

]


y1
y2
...
yn

 =
n∑

i=1

xiyi .

outer product

xyT ∈ Rm×n =


x1
x2
...
xm

 [ y1 y2 · · · yn
]
=


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn

...
...

. . .
...

xmy1 xmy2 · · · xmyn

 .
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Matrix-Vector Product

If we write A by rows, then we can express Ax as,

y = Ax =


— aT1 —
— aT2 —

...
— aTm —

 x =


aT1 x
aT2 x

...
aTmx

 .
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Matrix-Vector Product

If we write A by columns, then we have:

y = Ax =

 | | |
a1 a2 · · · an

| | |




x1
x2
...
xn

 =

 a1

 x1 +

 a2

 x2 + . . .+

 an

 xn .

(1)

y is a linear combination of the columns of A.
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Matrix-Vector Product

It is also possible to multiply on the left by a row vector.
If we write A by columns, then we can express x⊤A as,

yT = xTA = xT

 | | |
a1 a2 · · · an

| | |

 =
[
xTa1 xTa2 · · · xTan

]
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Matrix-Vector Product

It is also possible to multiply on the left by a row vector.
expressing A in terms of rows we have:

yT = xTA =
[
x1 x2 · · · xm

]


— aT1 —
— aT2 —

...
— aTm —


= x1

[
— aT1 —

]
+ x2

[
— aT2 —

]
+ ...+ xm

[
— aTm —

]
yT is a linear combination of the rows of A.
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Matrix-Matrix Multiplication (different views)

1. As a set of vector-vector products (dot product)

C = AB =


— aT1 —
— aT2 —

...
— aTm —


 | | |

b1 b2 · · · bp

| | |

 =


aT1 b

1 aT1 b
2 · · · aT1 b

p

aT2 b
1 aT2 b

2 · · · aT2 b
p

...
...

. . .
...

aTmb
1 aTmb

2 · · · aTmb
p

 .
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Matrix-Matrix Multiplication (different views)

2. As a sum of outer products

C = AB =

 | | |
a1 a2 · · · ap

| | |




— bT1 —
— bT2 —

...
— bTp —

 =

p∑
i=1

aibTi .
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Matrix-Matrix Multiplication (different views)

3. As a set of matrix-vector products.

C = AB = A

 | | |
b1 b2 · · · bn

| | |

 =

 | | |
Ab1 Ab2 · · · Abn

| | |

 . (2)

Here the ith column of C is given by the matrix-vector product with the vector on the right,
ci = Abi . These matrix-vector products can in turn be interpreted using both viewpoints
given in the previous subsection.
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Matrix-Matrix Multiplication (different views)

4. As a set of vector-matrix products.

C = AB =


— aT1 —
— aT2 —

...
— aTm —

B =


— aT1 B —
— aT2 B —

...
— aTmB —

 .
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Matrix-Matrix Multiplication (properties)

Associative: (AB)C = A(BC ).

Distributive: A(B + C ) = AB + AC .

In general, not commutative; that is, it can be the case that AB ̸= BA. (For example, if
A ∈ Rm×n and B ∈ Rn×q, the matrix product BA does not even exist if m and q are not
equal!)
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Operations and Properties
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The Transpose

The transpose of a matrix results from “flipping” the rows and columns. Given a matrix
A ∈ Rm×n, its transpose, written AT ∈ Rn×m, is the n ×m matrix whose entries are given by

(AT )ij = Aji .

The following properties of transposes are easily verified:
(AT )T = A

(AB)T = BTAT

(A+ B)T = AT + BT
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Trace

The trace of a square matrix A ∈ Rn×n, denoted trA, is the sum of diagonal elements in the
matrix:

trA =
n∑

i=1

Aii .

The trace has the following properties:
For A ∈ Rn×n, trA = trAT .
For A,B ∈ Rn×n, tr(A+ B) = trA+ trB .
For A ∈ Rn×n, t ∈ R, tr(tA) = t trA.
For A,B such that AB is square, trAB = trBA.
For A,B,C such that ABC is square, trABC = trBCA = trCAB , and so on for the
product of more matrices.
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Norms

A norm of a vector ∥x∥ is informally a measure of the “length” of the vector.

More formally, a norm is any function f : Rn → R that satisfies 4 properties:
1. For all x ∈ Rn, f (x) ≥ 0 (non-negativity).
2. f (x) = 0 if and only if x = 0 (definiteness).
3. For all x ∈ Rn, t ∈ R, f (tx) = |t|f (x) (homogeneity).
4. For all x , y ∈ Rn, f (x + y) ≤ f (x) + f (y) (triangle inequality).

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 22 / 64



Basic Concepts and Notation Matrix Multiplication Operations and Properties Matrix Calculus

Examples of Norms

The commonly-used Euclidean or ℓ2 norm,

∥x∥2 =

√√√√ n∑
i=1

x2
i .

The ℓ1 norm,

∥x∥1 =
n∑

i=1

|xi |

The ℓ∞ norm,
∥x∥∞ = maxi |xi |.
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Examples of Norms

In fact, all three norms presented so far are examples of the family of ℓp norms, which are
parameterized by a real number p ≥ 1, and defined as

∥x∥p =

(
n∑

i=1

|xi |p
)1/p

.
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Matrix Norms

Norms can also be defined for matrices, such as the Frobenius norm,

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√
tr(ATA).

Many other norms exist, but they are beyond the scope of this review.
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Linear Independence

A set of vectors {x1, x2, . . . xn} ⊂ Rm is said to be (linearly) dependent if one vector belonging
to the set can be represented as a linear combination of the remaining vectors; that is, if

xn =
n−1∑
i=1

αixi

for some scalar values α1, . . . , αn−1 ∈ R; otherwise, the vectors are (linearly) independent.

Example:

x1 =

 1
2
3

 x2 =

 4
1
5

 x3 =

 2
−3
−1


are linearly dependent because x3 = −2x1 + x2.

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 26 / 64



Basic Concepts and Notation Matrix Multiplication Operations and Properties Matrix Calculus

Linear Independence

A set of vectors {x1, x2, . . . xn} ⊂ Rm is said to be (linearly) dependent if one vector belonging
to the set can be represented as a linear combination of the remaining vectors; that is, if

xn =
n−1∑
i=1

αixi

for some scalar values α1, . . . , αn−1 ∈ R; otherwise, the vectors are (linearly) independent.
Example:

x1 =

 1
2
3

 x2 =

 4
1
5

 x3 =

 2
−3
−1


are linearly dependent because x3 = −2x1 + x2.

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 26 / 64



Basic Concepts and Notation Matrix Multiplication Operations and Properties Matrix Calculus

Rank of a Matrix

The column rank of a matrix A ∈ Rm×n is the largest number of columns of A that
constitute a linearly independent set.

The row rank is the largest number of rows of A that constitute a linearly independent set.

For any matrix A ∈ Rm×n, it turns out that the column rank of A is equal to the row rank
of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A,
denoted as rank(A).
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Properties of the Rank

For A ∈ Rm×n, rank(A) ≤ min(m, n). If rank(A) = min(m, n), then A is said to be full
rank .

For A ∈ Rm×n, rank(A) = rank(AT ).

For A ∈ Rm×p, B ∈ Rp×n, rank(AB) ≤ min(rank(A), rank(B)).

For A,B ∈ Rm×n, rank(A+ B) ≤ rank(A) + rank(B).
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The Inverse of a Square Matrix

The inverse of a square matrix A ∈ Rn×n is denoted A−1, and is the unique matrix such
that

A−1A = I = AA−1.

We say that A is invertible or non-singular if A−1 exists and non-invertible or singular
otherwise.

In order for a square matrix A to have an inverse A−1, then A must be full rank.

Properties (Assuming A,B ∈ Rn×n are non-singular):
▶ (A−1)−1 = A
▶ (AB)−1 = B−1A−1

▶ (A−1)T = (AT )−1. For this reason this matrix is often denoted A−T .
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Orthogonal Matrices

Two vectors x , y ∈ Rn are orthogonal if xT y = 0.
A vector x ∈ Rn is normalized if ∥x∥2 = 1.
A square matrix U ∈ Rn×n is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).

Properties:

▶ The inverse of an orthogonal matrix is its transpose.

UTU = I = UUT .

▶ Operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,

∥Ux∥2 = ∥x∥2

for any x ∈ Rn, U ∈ Rn×n orthogonal.
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Span and Projection

The span of a set of vectors {x1, x2, . . . xn} is the set of all vectors that can be expressed as
a linear combination of {x1, . . . , xn}. That is,

span({x1, . . . xn}) =

{
v : v =

n∑
i=1

αixi , αi ∈ R

}
.

The projection of a vector y ∈ Rm onto the span of {x1, . . . , xn} is the vector
v ∈ span({x1, . . . xn}), such that v is as close as possible to y , as measured by the
Euclidean norm ∥v − y∥2.

Proj(y ; {x1, . . . xn}) = argminv∈span({x1,...,xn})∥y − v∥2.
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Range

The range or the column space of a matrix A ∈ Rm×n, denoted R(A), is the the span of
the columns of A. In other words,

R(A) = {v ∈ Rm : v = Ax , x ∈ Rn}.

Assuming A is full rank and n < m, the projection of a vector y ∈ Rm onto the range of A
is given by,

Proj(y ;A) = argminv∈R(A)∥v − y∥2.
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Null space

The nullspace of a matrix A ∈ Rm×n, denoted N (A) is the set of all vectors that equal 0 when
multiplied by A, i.e.,

N (A) = {x ∈ Rn : Ax = 0}.
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The Determinant

The determinant of a square matrix A ∈ Rn×n, is a function det : Rn×n → R, and is denoted
|A| or detA.
Given a matrix 

— aT1 —
— aT2 —

...
— aTn —

 ,

consider the set of points S ⊂ Rn as follows:

S = {v ∈ Rn : v =
n∑

i=1

αiai where 0 ≤ αi ≤ 1, i = 1, . . . , n}.

The absolute value of the determinant of A is a measure of the “volume” of the set S .
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The Determinant: Intuition

For example, consider the 2 × 2 matrix,

A =

[
1 3
3 2

]
(3)

Here, the rows of the matrix are

a1 =

[
1
3

]
a2 =

[
3
2

]

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 35 / 64



Basic Concepts and Notation Matrix Multiplication Operations and Properties Matrix Calculus

The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:
1. The determinant of the identity is 1, |I | = 1. (Geometrically, the volume of a unit

hypercube is 1).

2. Given a matrix A ∈ Rn×n, if we multiply a single row in A by a scalar t ∈ R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)

3. If we exchange any two rows aTi and aTj of A, then the determinant of the new matrix is
−|A|, for example

In case you are wondering, it is not immediately obvious that a function satisfying the above
three properties exists. In fact, though, such a function does exist, and is unique (which we will
not prove here).
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The Determinant: Properties

For A ∈ Rn×n, |A| = |AT |.

For A,B ∈ Rn×n, |AB| = |A||B|.

For A ∈ Rn×n, |A| = 0 if and only if A is singular (i.e., non-invertible). (If A is singular then
it does not have full rank, and hence its columns are linearly dependent. In this case, the set
S corresponds to a “flat sheet” within the n-dimensional space and hence has zero volume.)

For A ∈ Rn×n and A non-singular, |A−1| = 1/|A|.
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The Determinant: Formula

Let A ∈ Rn×n, A\i ,\j ∈ R(n−1)×(n−1) be the matrix that results from deleting the ith row and
jth column from A.
The general (recursive) formula for the determinant is

|A| =
n∑

i=1

(−1)i+jaij |A\i ,\j | (for any j ∈ 1, . . . , n)

=
n∑

j=1

(−1)i+jaij |A\i ,\j | (for any i ∈ 1, . . . , n)

with the initial case that |A| = a11 for A ∈ R1×1. If we were to expand this formula completely
for A ∈ Rn×n, there would be a total of n! (n factorial) different terms. For this reason, we hardly
ever explicitly write the complete equation of the determinant for matrices bigger than 3 × 3.
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The Determinant: Examples

However, the equations for determinants of matrices up to size 3 × 3 are fairly common, and it is
good to know them:

|[a11]| = a11∣∣∣∣[ a11 a12
a21 a22

]∣∣∣∣ = a11a22 − a12a21∣∣∣∣∣∣
 a11 a12 a13

a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31
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Quadratic Forms

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar value xTAx is called a
quadratic form. Written explicitly, we see that

xTAx =
n∑

i=1

xi (Ax)i =
n∑

i=1

xi

 n∑
j=1

Aijxj

 =
n∑

i=1

n∑
j=1

Aijxixj .

We often implicitly assume that the matrices appearing in a quadratic form are symmetric.

xTAx = (xTAx)T = xTAT x = xT
(

1
2
A+

1
2
AT

)
x ,
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Positive Semidefinite Matrices

A symmetric matrix A ∈ Sn is:
positive definite (PD), denoted A ≻ 0 if for all non-zero vectors x ∈ Rn, xTAx > 0.

positive semidefinite (PSD), denoted A ⪰ 0 if for all vectors xTAx ≥ 0.

negative definite (ND), denoted A ≺ 0 if for all non-zero x ∈ Rn, xTAx < 0.

negative semidefinite (NSD), denoted A ⪯ 0 ) if for all x ∈ Rn, xTAx ≤ 0.

indefinite, if it is neither positive semidefinite nor negative semidefinite — i.e., if there
exists x1, x2 ∈ Rn such that xT1 Ax1 > 0 and xT2 Ax2 < 0.
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Positive Semidefinite Matrices

One important property of positive definite and negative definite matrices is that they are
always full rank, and hence, invertible.

Given any matrix A ∈ Rm×n (not necessarily symmetric or even square), the matrix
G = ATA (sometimes called a Gram matrix) is always positive semidefinite. Further, if
m ≥ n and A is full rank, then G = ATA is positive definite.
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Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue of A and x ∈ Cn is the
corresponding eigenvector if

Ax = λx , x ̸= 0.

Intuitively, this definition means that multiplying A by the vector x results in a new vector that
points in the same direction as x , but scaled by a factor λ.
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Eigenvalues and Eigenvectors

We can rewrite the equation above to state that (λ, x) is an eigenvalue-eigenvector pair of A if,

(λI − A)x = 0, x ̸= 0.

But (λI − A)x = 0 has a non-zero solution to x if and only if (λI − A) has a non-empty
nullspace, which is only the case if (λI − A) is singular, i.e.,

|(λI − A)| = 0.

We can now use the previous definition of the determinant to expand this expression |(λI − A)|
into a (very large) polynomial in λ, where λ will have degree n. It’s often called the
characteristic polynomial of the matrix A.
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Properties of eigenvalues and eigenvectors

The trace of a A is equal to the sum of its eigenvalues,

trA =
n∑

i=1

λi .

The determinant of A is equal to the product of its eigenvalues,

|A| =
n∏

i=1

λi .

The rank of A is equal to the number of non-zero eigenvalues of A.
Suppose A is non-singular with eigenvalue λ and an associated eigenvector x . Then 1/λ is
an eigenvalue of A−1 with an associated eigenvector x , i.e., A−1x = (1/λ)x .
The eigenvalues of a diagonal matrix D = diag(d1, . . . dn) are just the diagonal entries
d1, . . . dn.
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Eigenvalues and Eigenvectors of Symmetric Matrices

Throughout this section, let’s assume that A is a symmetric real matrix (i.e., A⊤ = A). We have
the following properties:

1. All eigenvalues of A are real numbers. We denote them by λ1, . . . , λn.

2. There exists a set of eigenvectors u1, . . . , un such that (i) for all i , ui is an eigenvector with
eigenvalue λi and (ii) u1, . . . , un are unit vectors and orthogonal to each other.
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New Representation for Symmetric Matrices

Let U be the orthonormal matrix that contains ui ’s as columns:

U =

 | | |
u1 u2 · · · un
| | |



Let Λ = diag(λ1, . . . , λn) be the diagonal matrix that contains λ1, . . . , λn.

AU =

 | | |
Au1 Au2 · · · Aun
| | |

 =

 | | |
λ1u1 λ2u2 · · · λnun
| | |

 = Udiag(λ1, . . . , λn) = UΛ

Recalling that orthonormal matrix U satisfies that UUT = I , we can diagonalize matrix A:

A = AUUT = UΛUT (4)
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Background: representing vector w.r.t. another basis

Any orthonormal matrix U =

 | | |
u1 u2 · · · un
| | |

 defines a new basis of Rn.

For any vector x ∈ Rn can be represented as a linear combination of u1, . . . , un with
coefficient x̂1, . . . , x̂n:

x = x̂1u1 + · · ·+ x̂nun = Ux̂

Indeed, such x̂ uniquely exists

x = Ux̂ ⇔ UT x = x̂

In other words, the vector x̂ = UT x can serve as another representation of the vector x
w.r.t the basis defined by U.
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“Diagonalizing” matrix-vector multiplication

Left-multiplying matrix A can be viewed as left-multiplying a diagonal matrix w.r.t the basic
of the eigenvectors.

▶ Suppose x is a vector and x̂ is its representation w.r.t to the basis of U.
▶ Let z = Ax be the matrix-vector product.
▶ the representation z w.r.t the basis of U:

ẑ = UT z = UTAx = UTUΛUT x = Λx̂ =


λ1x̂1
λ2x̂2

...
λnx̂n


We see that left-multiplying matrix A in the original space is equivalent to left-multiplying
the diagonal matrix Λ w.r.t the new basis, which is merely scaling each coordinate by the
corresponding eigenvalue.
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“Diagonalizing” matrix-vector multiplication

Under the new basis, multiplying a matrix multiple times becomes much simpler as well. For
example, suppose q = AAAx .

q̂ = UTq = UTAAAx = UTUΛUTUΛUTUΛUT x = Λ3x̂ =


λ3

1x̂1
λ3

2x̂2
...

λ3
nx̂n


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“Diagonalizing” quadratic form

As a directly corollary, the quadratic form xTAx can also be simplified under the new basis

xTAx = xTUΛUT x = x̂TΛx̂ =
n∑

i=1

λi x̂
2
i

(Recall that with the old representation, xTAx =
∑n

i=1,j=1 xixjAij involves a sum of n2 terms
instead of n terms in the equation above.)
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The definiteness of the matrix A depends entirely on the sign of
its eigenvalues

1. If all λi > 0, then the matrix A is positive definite because xTAx =
∑n

i=1 λi x̂
2
i > 0 for any

x̂ ̸= 0.1

2. If all λi ≥ 0, it is positive semidefinite because xTAx =
∑n

i=1 λi x̂
2
i ≥ 0 for all x̂ .

3. Likewise, if all λi < 0 or λi ≤ 0, then A is negative definite or negative semidefinite
respectively.

4. Finally, if A has both positive and negative eigenvalues, say λi > 0 and λj < 0, then it is
indefinite. This is because if we let x̂ satisfy x̂i = 1 and x̂k = 0,∀k ̸= i , then
xTAx =

∑n
i=1 λi x̂

2
i > 0. Similarly we can let x̂ satisfy x̂j = 1 and x̂k = 0,∀k ̸= j , then

xTAx =
∑n

i=1 λi x̂
2
i < 0.

1Note that x̂ ̸= 0 ⇔ x ̸= 0.
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Matrix Calculus
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The Gradient

Suppose that f : Rm×n → R is a function that takes as input a matrix A of size m × n and
returns a real value. Then the gradient of f (with respect to A ∈ Rm×n) is the matrix of partial
derivatives, defined as:

∇Af (A) ∈ Rm×n =


∂f (A)
∂A11

∂f (A)
∂A12

· · · ∂f (A)
∂A1n

∂f (A)
∂A21

∂f (A)
∂A22

· · · ∂f (A)
∂A2n

...
...

. . .
...

∂f (A)
∂Am1

∂f (A)
∂Am2

· · · ∂f (A)
∂Amn


i.e., an m × n matrix with

(∇Af (A))ij =
∂f (A)

∂Aij
.
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The Gradient

Note that the size of ∇Af (A) is always the same as the size of A. So if, in particular, A is just a
vector x ∈ Rn,

∇x f (x) =


∂f (x)
∂x1
∂f (x)
∂x2
...

∂f (x)
∂xn

 .

It follows directly from the equivalent properties of partial derivatives that:
∇x(f (x) + g(x)) = ∇x f (x) +∇xg(x).
For t ∈ R, ∇x(t f (x)) = t∇x f (x).
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The Hessian

Suppose that f : Rn → R is a function that takes a vector in Rn and returns a real number.
Then the Hessian matrix with respect to x , written ∇2

x f (x) or simply as H is the n × n matrix
of partial derivatives,

∇2
x f (x) ∈ Rn×n =


∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

· · · ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂x2

2
· · · ∂2f (x)

∂x2∂xn
...

...
. . .

...
∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

· · · ∂2f (x)
∂x2

n

 .

In other words, ∇2
x f (x) ∈ Rn×n, with

(∇2
x f (x))ij =

∂2f (x)

∂xi∂xj
.
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Suppose that f : Rn → R is a function that takes a vector in Rn and returns a real number.
Then the Hessian matrix with respect to x , written ∇2

x f (x) or simply as H is the n × n matrix
of partial derivatives,

∇2
x f (x) ∈ Rn×n =


∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

· · · ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂x2

2
· · · ∂2f (x)

∂x2∂xn
...

...
. . .

...
∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

· · · ∂2f (x)
∂x2

n

 .

Note that the Hessian is always symmetric, since

∂2f (x)

∂xi∂xj
=

∂2f (x)

∂xj∂xi
.
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Gradients of Linear Functions

For x ∈ Rn, let f (x) = bT x for some known vector b ∈ Rn. Then

f (x) =
n∑

i=1

bixi

so
∂f (x)

∂xk
=

∂

∂xk

n∑
i=1

bixi = bk .

From this we can easily see that ∇xb
T x = b. This should be compared to the analogous

situation in single variable calculus, where ∂/(∂x) ax = a.
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Gradients of Quadratic Function

Now consider the quadratic function f (x) = xTAx for A ∈ Sn. Remember that

f (x) =
n∑

i=1

n∑
j=1

Aijxixj .

To take the partial derivative, we’ll consider the terms including xk and x2
k factors separately:

∂f (x)

∂xk
=

∂

∂xk

n∑
i=1

n∑
j=1

Aijxixj

=
∂

∂xk

∑
i ̸=k

∑
j ̸=k

Aijxixj +
∑
i ̸=k

Aikxixk +
∑
j ̸=k

Akjxkxj + Akkx
2
k


=

∑
i ̸=k

Aikxi +
∑
j ̸=k

Akjxj + 2Akkxk
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Gradients of Quadratic Function

Now consider the quadratic function f (x) = xTAx for A ∈ Sn. Remember that

f (x) =
n∑

i=1

n∑
j=1

Aijxixj .

To take the partial derivative, we’ll consider the terms including xk and x2
k factors separately:

∂f (x)

∂xk
=

∂

∂xk

n∑
i=1

n∑
j=1

Aijxixj

=
∑
i ̸=k

Aikxi +
∑
j ̸=k

Akjxj + 2Akkxk

=
n∑

i=1

Aikxi +
n∑

j=1

Akjxj = 2
n∑

i=1

Akixi ,
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Hessian of Quadratic Functions

Finally, let’s look at the Hessian of the quadratic function f (x) = xTAx
In this case,

∂2f (x)

∂xk∂xℓ
=

∂

∂xk

[
∂f (x)

∂xℓ

]
=

∂

∂xk

[
2

n∑
i=1

Aℓixi

]
= 2Aℓk = 2Akℓ.

Therefore, it should be clear that ∇2
xx

TAx = 2A, which should be entirely expected (and again
analogous to the single-variable fact that ∂2/(∂x2) ax2 = 2a).
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Recap

∇xb
T x = b

∇2
xb

T x = 0

∇xx
TAx = 2Ax (if A symmetric)

∇2
xx

TAx = 2A (if A symmetric)
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Matrix Calculus Example: Least Squares

Given a full rank matrix A ∈ Rm×n, and a vector b ∈ Rm such that b ̸∈ R(A), we want to
find a vector x such that Ax is as close as possible to b, as measured by the square of the
Euclidean norm ∥Ax − b∥2

2.

Using the fact that ∥x∥2
2 = xT x , we have

∥Ax − b∥2
2 = (Ax − b)T (Ax − b) = xTATAx − 2bTAx + bTb

Taking the gradient with respect to x we have:

∇x(x
TATAx − 2bTAx + bTb) = ∇xx

TATAx −∇x2bTAx +∇xb
Tb

= 2ATAx − 2ATb

Setting this last expression equal to zero and solving for x gives the normal equations

x = (ATA)−1ATb
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