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Basic Concepts and Notation
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Basic Notation

@ By x € R”, we denote a vector with n entries.
X1
X2

(Y\xf):

Xn

@ By A € R™*" we denote a matrix with m rows and n columns, where the entries of A are
real numbers.

ai agp - J— a]T J— (' x n)
A 321 322 e { ‘ ’n —_— a2T —_— l
= . T al A" | = . :
CM xh) ‘ ’ T m
aml aAm2 *** amn (m)d) —_— 7 —_ am —_
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Basic Concepts and Notation
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The Identity Matrix

The identity matrix, denoted | € R" ", is a square matrix with ones on the diagonal and zeros
everywhere else. That is, '

[ { 1 i=j

PT00 P4

N
It has the property that for all A € R™*", t :
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Basic Concepts and Notation
[e]e]e]e] )

Diagonal matrices

A diagonal matrix is a matrix where all non-diagonal elements are 0. This is typically denoted
D= diag(dl, do, ..., d,,), with
C(d =)
Dy = { 0 i#j

Clearly, I = diag(1,1,...,1).
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Matrix Multiplication
0000000000

Vector-Vector Product

e inner product or dot product

vechor vecho+ Y1
G TJ Y2 “
XyER:[X1 X2 e Xn] : :ZXiYi-

e gy Lo

e outer product @y_ 1) nedl wob Lo ! &)

re.chor makryx | X @) X1yt Xiy2 o X1Yn »
S T n X2 Xo¥1  XoY2 ot XoYn (m )
y ERTI=1 [y oy o = N
. : : : S I
Xm XmY1 XmY2 ' XmYn
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Matrix Multiplication
00000000000

Matrix-Vector Product cowe 40 clars noke |h(z%) = @)’ o

ACX) > xe
o If we write A by rows, then we can express Ax as, Q
(% n) ) k‘)
l— a;T —) |:a;Tx§ Veihor- 09
— a] — ad x .
y =Ax = 2 X 2 : W\l
: : ol
— al — al x P
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Matrix Multiplication
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Matrix-Vector Product

o If we write A by columns, then we have:

(‘”‘\xh) Q\)‘))
X1
’ ‘ ’ X2
y=Ax=| al a* ... a" ) =] at [ x4+ ]| & |x+...+| a3 | x, .
| ! '
(’mxl) ! R

Qe D (1x)) W

y is a linear combination of the columns of A.

7 sun
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Matrix Multiplication
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Matrix-Vector Product

It is also possible to multiply on the left by a row vector.

o If we write A by columns, then we can express xTA as,
@en)

| |
yT=xTA=xT|at 2 - a" | =[xTal xTa? - xTa" |

Gt LT ey —

Q’W)
(1x h)
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Matrix-Vector Product

It is also possible to multiply on the left by a row vector.

@ expressing A in terms of rows we have: G" n)
>
— af —1Qxn)
L
Uxw) _ a-T —
m
= xl[— alT —]—i—x2[— 32T —]—i—...—i—xm[— a; —]
(ixyg
yT is a linear combination of the rows of A. >
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Matrix Multiplication
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Matrix-Matrix Multiplication (different views)

1. As a set of vector-vector products (dot product)
Q“’x h) Qf\x F)

1
.

C=AB= 2 bl b2
(mp) — [

CS» - a; A()
() @) (nx1)
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Matrix Multiplication
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Matrix-Matrix Multiplication (different views)

2. As a sum of outer products Q)Dx n)

(mx v) oy —
QVI;q) —_— P Q)‘- n)

. ‘.‘7
& e
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Matrix Multiplication
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Matrix-Matrix Multiplication (different views)

3. As a set of matrix-vector products.

. | I |
C=AB=A| bt b - b" | =| Abl AR ... Ab" |. (2)

Here the ith column of C is given by the matrix-vector product with the vector on the right,
[ ci = Ab;.) These matrix-vector products can in turn be interpreted using both viewpoints
given in the previous subsection.
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Matrix Multiplication
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Matrix-Matrix Multiplication (different views)

4. As a set of vector-matrix products.

— a — — a/B —
— a] — — ajB —
— a3l — — alB —
N
d = v c -
7 ' alg
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Matrix-Matrix Multiplication (properties)
# 8lc (o % X)
’
e Associative: (AB)C = A(BC). } FWVQ |

o Distributive: A(B+ C) = AB + AC. not meuoma

@ In general, not commutative; that is, it can be the case that IAB # BA| (For example, if
A e R™" and B € R"*9, the matrix product BA does not even exist if m and ¢ are not
equal!)

Counktl w\”-{

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 17 /64


Nandita

Nandita

Nandita


Operations and Properties
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Operations and Properties
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The Transpose

The transpose of a matrix results from “flipping” the rows and columns. Given a matrix
A € R™*" its transpose, written AT € R"*™ is the n x m matrix whose entries are given by

(AT)ij = Aj,'. A p(T
The following properties of transposes are easily verified: - i:
o (A=A — Hip tie
o (AB)T =BTAT  avdar
o (A+B)T =AT + BT

wa’
s flp = Hip o sum |

@ xm)
/ Q’Y)xY)7
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Operations and Properties
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The trace of a square matrix A € RZX” denoted trA, is the sum of diagonal elements in the

L=

matrix:
n a,
trA = Z Aji. [ A4
—
: Gy

The trace has the following propertieS'

For Ac R™", trA = trAT. = pr Ases it W ouajww(g

For A,B € R™", tr(A+ B) _trA+tr |

For Ac R™", t € R, tr(tA) = t trA. J ’42

For A, B such that AB is square,@ d*”gf e 'gfu'dc'“p !

For A, B, C such that ABC is square, trABC = trBCA = trCAB, and so on for the
product of more matrices. # tr Acp <(IYM @ *)
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Operations and Properties
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A norm of a vector ||x|| is informally a measure of the “length” of the vector.

——

More formally, a norm is any function f : R" — R that satisfies 4 properties:
1. Forall x e R", f(x) >0 (non negativity).
2. f(x)=0ifand only if x =0 (deflnlteness j W“
3. Forall x e R", t € R, f(tx) = ]t|f(x) (homogeneity). (ﬂlwii Dmp. Scales le/baﬂ\
4. For all x,y € R", f(x +y) < f(x) + f(y) (triangle inequality
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Operations and Properties
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Examples of Norms

The commonly-used Euclidean or £, norm,

— =%
2,
[Ix[l2 = ;
Z,
The&norm, ]
Il = 3 Ixi
i=1

The ¢ norm,

—_—
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Operations and Properties
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Examples of Norms

In fact, all three norms presented so far are examples of the family of ¢, norms, which are
parameterized by a real number p > 1, and defined as -

—

n 1/p

Ixllp = { D Ixl?

i=1
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Matrix Norms

Norms can also be defined for matrices, such as the Frobenius norm, ~ ,
—_— ) N .
m n alm T Q,M’\
_ 2 _
IAllF = [ D> A2 =/tr(ATA).
i=1 j=1 —
] J AY M&QM ,

Many other norms exist, but they are beyond the scope of this review. wid/ e Mg

Gour. &

xgon.
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Operations and Properties
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Linear Independence

A set of vectors {x1, x2,...xp} C R™ is said to be (linearly) dependent if onmctor belonging
to the set can be represented as a linear combination of the remaining vectors; that is, if

n—1
Xn = Z i
i=1 ®;C'JM~ 0ofd .

for some scalar values a1, ..., a1 € R; otherwise, the vectors are (linearly) independent.
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00000000®000000000000000000O00000000
Linear Independence

A set of vectors {x1, x2,...xp} C R™ is said to be (linearly) dependent if one vector belonging
to the set can be represented as a linear combination of the remaining vectors; that is, if

n—1
Xn = g QX
i=1

for some scalar values a1, ..., a1 € R; otherwise, the vectors are (linearly) independent.
Example:
1 4 2
X1 = 2 Xp = 1 X3 = -3
3 5 -1
are linearly dependent because x3 = —2x1 + xo.
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Operations and Properties
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Rank of a Matrix

@ The column rank of a matrix A € R™*" is the largest number of columns of A that
-_—
constitute a linearly independent set.

col. yaup lc < # cofs = '

(mx n)
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Rank of a Matrix

@ The column rank of a matrix A € R™*" is the largest number of columns of A that
constitute a linearly independent set.

@ The row rank is the largest number of rows of A that constitute a linearly independent set.

Yoo rank < #H wwd = m A -
J} @x“)
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Rank of a Matrix

@ The column rank of a matrix A € R™*" is the largest number of columns of A that
constitute a linearly independent set.

@ The row rank is the largest number of rows of A that constitute a linearly independent set.

@ For any matrix A € R™*" it turns out that the column rank of A is equal to the row rank
of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A,

denoted as rank(A). (f
YU f)

wl- vonk = yow Tank - vank(A)
aq A q A
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Properties of the Rank

e For A e R™" rank(A) < min(m,n). If(rank(A) = mi@then A is said to be full
rank. T

—_—
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Properties of the Rank

e For A e R™" rank(A) < min(m,n). If rank(A) = min(m, n), then A is said to be full
rank.

@ For Ae R™*M rw)_ %'Plaw\a 0(‘0%9»’1.:{' Juwﬁe_
et dep endonce !
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Properties of the Rank

e For A e R™" rank(A) < min(m,n). If rank(A) = min(m, n), then A is said to be full
rank.

o For A€ R™" rank(A) = rank(AT).

@ For Ac R™P, B € RP*" rank(AB) < min(rank(A), rank(B)).
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Properties of the Rank

e For A e R™" rank(A) < min(m,n). If rank(A) = min(m, n), then A is said to be full
rank.

For A€ R™" rank(A) = rank(AT).

For A€ R™*P, B € RP*", rank(AB) < min(rank(A), rank(B)).

For A, B € R™*", rank(A + B) < rank(A) + rank(B).

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 28 /64


Nandita


The Inverse of a Square Matrix

@ The inverse of a square matrix A € R"*" is denoted[A_ll and is the unique matrix such
that ‘

(A*lA:/:AA\*Q

Dos  Huis m&owéu &xict 2

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 29 /64


Nandita

Nandita


000000000000 0000000000000000000000
The Inverse of a Square Matrix
o The inverse of a square matrix A € R™*" is denoted A~!, and is the unique matrix such

that
ATA=1=AA"1.

e We say that A is invertible or non-singular if A1 exists and non-invertible or singular
otherwise. — —_—

When,  does it ewmisf 00
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The Inverse of a Square Matrix
o The inverse of a square matrix A € R™*" is denoted A~!, and is the unique matrix such

that
ATA=1=AA"1.

e We say that A is invertible or non-singular if A1 exists and non-invertible or singular
otherwise.

@ In order for a square matrix A to have an inverse A1, then|A must be full rank.\

f R Al monk - we b
L9mane non -angula
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The Inverse of a Square Matrix

o The inverse of a square matrix A € R™*" is denoted A~!, and is the unique matrix such
that
AlA==AAT1.

e We say that A is invertible or non-singular if A1 exists and non-invertible or singular
otherwise.

@ In order for a square matrix A to have an inverse A1, then A must be full rank.

@ Properties (Assuming A, B € R™*" are non-singular):
\/> (A_l)_l = A

|
» (AB) L =B 1Al owdar! z prove.
» (A"1)T = (AT)~L. For this reason this matrix is often denoted
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X
Orthogonal Matrices ’ y

e Two vectors x, y € R" are orthogonal if x"y = 0.

o A vector x € R" is normalized if || x| = 1.

@ A square matrix U € R"™" is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).

L - -
U"i i-{lz...\,{‘ colg - mfﬁoao\/\gj +o  eadh otor
T WOvmali 2¢0f

éﬂxv\) u'.". "E/ ;@ w u = D
(€ #0)
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Orthogonal Matrices

Two vectors x, y € R” are orthogonal if x"y = 0.

A vector x € R" is normalized if ||x|» = 1.

A square matrix U € R"*" is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).

Properties:
» The inverse of an orthogonal matrix is its transpose.
— r

[vVTu=1=uu]
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Orthogonal Matrices

e Two vectors x, y € R" are orthogonal if x"y = 0.

o A vector x € R" is normalized if || x| = 1.

@ A square matrix U € R"™" is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).

o Properties:
» The inverse of an orthogonal matrix is its transpose.

utu=1=uU".
» Operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,

[\|UX||2=||x||2} no scaling i £, morme

for any x € R", U € R"*" orthogonal.
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Span and Projection

@ The span of a set of vectors {xi, x2, ... x,} is the set of all vectors that can be expressed as
a linear combination of {x1,...,x,}. That is,

span({xi,...xp}) = {v LV = Za,-x,-, o € R} .
i=1
dl
—

d =

Span z
f R f’lm ' [ AfM NS
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Span and Projection

@ The span of a set of vectors {xi, x2,...xp} is the set of all vectors that can be expressed as
a linear combination of {x1,...,x,}. That is,

n
span({xi,...xp}) =< v:v= Za,-x,-, aj €R
i=1

e The projection of a vector y € R™ onto the span of {xi,...,x,} is the vector
v € span({x1,...xn}), such that v is as close as possible to y, as measured by the
Euclidean norm [|v — y||2.

Proj(y; {X17 s Xn}) = argminvespan({xl,...,X,,})Hy - VH2'
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Range

@ The range or the column space of a matrix A € R™*", denoted R(A), is the the span of
the columns of A. In other words,

R(A) ={veR™ :(v = Ax?x € R}
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Range

@ The range or the column space of a matrix A € R™*" denoted R(A), is the the span of
the columns of A. In other words,

R(A)={veR™:v=Ax,x € R"}.

@ Assuming A is full rank and n < m, the projection of a vector y € R onto the range of A

is given by, .
Proj(y; A) = largmin, cg(a)llv — yl|2. (

—
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Null space

The nullspace of a matrix A € R™*", denoted N(A) is the set of all vectors that equal 0 when
multiplied by A, i.e.,
N(A) = {x e R": Ax = 0}.

Tewamber o(%,oao,/up( \,«e(/k)vf'l
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The Determinant
waliy &Anc

The determinant of a square matrix A € R"*", is a function det : R"*" — R, and is denoted
determinant square

|A| or det A.

Given a matrix

geove Kicelly . — ] —
consider the set of points S C R” as follows:

vy vk n
'S’f’ﬂ#\f Sz{veR”:v:Za;a;whereoggl,izl,...,n}.
i=1

The absolute value of the determinant of A is a measure of the“'volume”’of the set S.
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The Determinant: Intuition
For example, consider the 2 x 2 matrix,
1 3
a-| o

Here, the rows of the matrix are
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The Determinant: Properties
Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).
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The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).

2. Given a matrix A € R™" if we multiply a single row in A by a scalar t € R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)
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The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).

2. Given a matrix A € R™" if we multiply a single row in A by a scalar t € R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)

3. If we exchange any two rows a/ and ajT of A, then the determinant of the new matrix is
determinant
—|Al, for example
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The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).

2. Given a matrix A € R™" if we multiply a single row in A by a scalar t € R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)

3. If we exchange any two rows a/ and ajT of A, then the determinant of the new matrix is
—|Al, for example
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The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).

2. Given a matrix A € R™" if we multiply a single row in A by a scalar t € R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)

3. If we exchange any two rows a/ and ajT of A, then the determinant of the new matrix is
—|Al, for example

In case you are wondering, it is not immediately obvious that a function satisfying the above
three properties exists. In fact, though, such a function does exist, and is unique (which we will
not prove here).
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The Determinant: Properties

o For Ac R™" |Al = |AT|.

o For A,B € R™" |AB| = |A||B]. ot fudl ronk |

e For Ac R"™" |A| =0 if and only if Ais singular (i.e., non-invertible). (If A is singular then
it does not have full rank, and hence its columns are linearly dependent. In this case, the set
S corresponds to a “flat sheet” within the n-dimensional space and hence has zero volume.)

e For A€ R™" and A non-singular, |A71| = 1/|A|.
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The Determinant: Formula '!

Let A€ R™" A\ € R("—=1)x(1=1) he the matrix that results from deleting the ith row and
jth column from A.
The general (recursive) formula for the determinant is

n

Al = Z(—l)iJrjaij\A\i’\j] (foranyjel,....n)
i=1

= z(—l)"Jrfa;j\A\,-,\j] (foranyiel,...,n)
j=1

with the initial case that |A| = aj; for A € R¥1. If we were to expand this formula completely
for A € R™", there would be a total of n! (n factorial) different terms. For this reason, we hardly
ever explicitly write the complete equation of the determinant for matrices bigger than 3 x 3.
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The Determinant: Examples

However, the equations for determinants of matrices up to size 3 x 3 are fairly common, and it is
good to know them:

[a1]] = an
a a
H % 12” = ajax — apan
as1  ax

aii1az2as33 + a12a23a431 + a13az1as3?

a a a =
21 22 23 —ai11a234a32 — a12a214a33 — a134a22331
as1 a2 ass
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Quadratic Forms .@

Given a square matrix A € R"™" and a vector x € R", the scalar value xT Ax is called a
- —_—

quadratic form. Written explicitly, we see that
f; outhy dovert 9 4

XTAX:ZX, AX,—ZX, ZAUXJ :ZZAUX,):M.LDJ M? Z
6(42‘“) i=1 i=1 j=1 W Zd :

e T
C'Ax)" = XA
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Quadratic Forms

Given a square matrix A € R™" and a vector x € R", the scalar value x" Ax is called a
quadratic form. Written explicitly, we see that

xT Ax = zn:x;(Ax),- = znjx,- zn:AUXJ = zn:zn:A,-jx,-xJ' .
i=1 j=1

i=1 = = i=1 j=1

We often implicitly assume that the matrices appearing in a quadratic form are symmetric.

fork  conbrbulg
xTAx = (xTAx)T =xTATx = xT <;A + ;AT> X, t @ Royn
~———
Scafur
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Positive Semidefinite Matrices

A symmetric matrix A € S” is:

e positive definite (PD), denoted A > 0 if for all non-zero vectors x € R”, x” Ax > 0.

— —_—

o positive semidefinite (PSD), denoted A = 0 if for all vectors x" Ax > 0.
L en RO A AR 2

o negative definite (ND), denoted A < 0 if for all non-zero x € R”, xT Ax < 0.

o negative semidefinite (NSD), denoted A <0 ) if for all x € R", xT Ax < 0.

e indefinite, if it is neither positive semidefinite nor negative semidefinite — i.e., if there
exists x1, xo € R” such that x Ax; > 0 and x; Axp < 0.
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Positive Semidefinite Matrices

@ One important property of positive definite and negative definite matrices is that they are
always full rank, and hence, invertible. ded # o

e Given any matri (not necessarily symmetric or even square), the matrix
G = AT A (sometimes called a Gram matrix) is always positive semidefinite. Further, if
m > n and A is full rank, then G = AT A is positive definite.

sy A —  Granls) - AT
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o

N ~
/" }/

Given a square matrix A € R™" we say that A e@is an eigenvalue of A and x € C" is the

corresponding eigenvector if
‘ Ax = Ax,| x #0.

Intuitively, this definition means that multiplying A by the vector x results in a new vector that

points in the same direction as x, but scaled by a factor \.
>ame direction >caled by @ Tactor -

Eigenvalues and Eigenvectors i X
\\\/7

/-\.x -—;W’cmmmﬁm ?X <
u&u’/\aA ‘

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 43 /64


Nandita

Nandita

Nandita

Nandita

Nandita


Eigenvalues and Eigenvectors Ax = DT x

We can rewrite the equation above to state that (), x) is an eigenvalue-eigenvector pair of A if,

L()\I —A)x = O,) x # 0.

But (A — A)x = 0 has a non-zero solution to x if and only if (Al — A) has a non-empty
nullspace, which is only the case if (Al — A) is singular, i.e.,

T fad A = | —A)=o0.

We can now use the previous definition of the determinant to expand this expression |(A/ — A)|

into a (very large) polynomial in A, where A will have degree n. It's often called the
characteristic polynomial of the matrix A.
araclenstic polynomid
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Properties of eigenvalues and eigenvectors

@ The trace of a A is equal to the sum of its eigenvalues,
———g\n ,
A=Y A
i=1
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Properties of eigenvalues and eigenvectors

@ The trace of a A is equal to the sum of its eigenvalues,

trA = Zn: Aj.
i=1

@ The determinant of A is equal to the product of its eigenvalues,

Al=T] N
i=1
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Properties of eigenvalues and eigenvectors

@ The trace of a A is equal to the sum of its eigenvalues,

trA = Zn: Aj.
i=1

@ The determinant of A is equal to the product of its eigenvalues,

Al=T] N
i=1

@ The rank of A is equal to the number of non-zero eigenvalues of A.
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Properties of eigenvalues and eigenvectors
@ The trace of a A is equal to the sum of its eigenvalues,
n
A=Y A
i=1
@ The determinant of A is equal to the product of its eigenvalues,
n
Al=T] N
i=1

@ The rank of A is equal to the number of non-zero eigenvalues of A.
@ Suppose A is non-singular with eigenvalue A\ and an associated eigenvector x. Thenil/gz is
an eigenvalue ofwith an associated eigenvector x, i.e., A71x = (1/\)x.
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Properties of eigenvalues and eigenvectors

@ The trace of a A is equal to the sum of its eigenvalues,

trA = Zn: Aj.
i=1

@ The determinant of A is equal to the product of its eigenvalues,

Al=T] N
i=1

@ The rank of A is equal to the number of non-zero eigenvalues of A.

@ Suppose A is non-singular with eigenvalue A\ and an associated eigenvector x. Then 1/\ is
an eigenvalue of A~ with an associated eigenvector x, i.e., A~1x = (1/\)x.

@ The eigenvalues of a diagonal matrix D = diag(dh, ... d,) are just the diagonal entries
di,...dy.

CS229 Linear Algebra Review Spring 2022 Nandita Bhaskhar 45 / 64



Nandita


Operations and Properties
000000000000 0000000000000000e000000

Eigenvalues and Eigenvectors of Symmetric Matrices

—

Throughout this section, let's assume that A is a symmetric real matrix (i.e., AT = A). We have
the following properties:

1. All eigenvalues of A are real numbers. We denote them by A1,..., \,.
etV =4
2. There exists a set of eigenvectors uy, ..., u, such that (i) for all i, u; is an eigenvector with
. . \.
eigenvalue A; and (ii) u1, ..., u, are unit vectors and orthogonal to each other.

A ‘ W’ul "",u‘h 7cv~( A (SV{T\M;C) wnth )I /,\L oL
Con mbusg
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New Representation for Symmetric Matrices

@ Let U be the orthonormal matrix that contains u;'s as columns: A
: Ylen

ul u2 PR un

U=
Gra) LI T
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New Representation for Symmetric Matrices

@ Let U be the orthonormal matrix that contains u;'s as columns:

U= wn wu - up
| |

o Let A =diag(A1,...,An) be the diagonal matrix that contains Az, ..., Ap.

| | | |
AU = Auy -+ Au, | = | M| dowa -+ Aqu, | = Udiag(Ay, ..., A,) = UA
| | | |
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New Representation for Symmetric Matrices

@ Let U be the orthonormal matrix that contains u;'s as columns:

U= wn wu - up
| |

o Let A =diag(A1,...,An) be the diagonal matrix that contains Az, ..., Ap.

| | | | | |
AU= | Ay Aur -+ Au, | = | Mun o -+ A, | = Udiag(Ag, ..., A) = UA

o Recalling that orthonormal matrix U satisfies that UUT = I, we can diagonalize matrix A:

A=AUUT = UNUT (4)
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Background: representing vector w.r.t. another basis

L chargrig

@ Any orthonormal matrix U= | u; w» --- u, | defines a new basis of R". i,
e — ——
| | Loodlinakz
. o res |
@ For any vector x € R” can be represented as a linear combination of w1, ..., u, with -
coefficient Xq,..., Xn:

~ ~ N U o
X =Xuy + -+ Rpup, = UX X =Vax

@ Indeed, such X uniquely exists =) [~ —
- %= 0'x
[x=Ut s UTx=% | :_(

In other words, the vector X = UT x can serve as another representation of the vector x
w.r.t the basis defined by U.
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“Diagonalizing” matrix-vector multiplication

o Left-multiplying matrix A can be viewed as left-multiplying a diagonal matrix w.r.t the basic
of the eigenvectors.
T

~
» Suppose x is a vector and X is its representation w.r.t to the basis of U. 2( = | X
» Let z = Ax be the matrix-vector product.
» the representation z w.r.t the basis of U:

@ We see that left-multiplying matrix A in the original space is equivalent to left-multiplying

the diagonal matrix A w.r.t the new basis, which is merely scaling each coordinate by the
corresponding eigenvalue.
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“Diagonalizing” matrix-vector multiplication

laking oo power @ o rakic
Under the new basis, multiplying a matrix multiple times becomes much simpler as well. For
example, suppose [q = AAAx.
Ny
T T T T T T 3 A3%
G=U"q=U"AAAx=U"UNU"UNU"UNU"' x = N°% =

3
A5 Rn

/izmx = (\*) ¢
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“Diagonalizing” quadratic form

As a directly corollary, the quadratic form x 7 Ax can also be simplified under the new basis

xTUNUT x = £TAR

(Recall that with the old representation, x T Ax = > s j=1 XiXjAjj involves a sum of n? terms
instead of n terms in the equation above.) —
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The definiteness of the matrix A depends entirely on the sign of
its eigenvalues

L. If pll A; > 0] then the matrix A is positive definite because x " Ax = >_7_, \;%? > 0 for any
T

X #£0.

2. If all \; >0, it is positive semidefinite because xT Ax = "7, \;%? > 0 for all %.

3. Likewise, if all \; < 0 or \; <0, then A is negative definite or negative semidefinite
respectively.

4. Finally, if A has both positive and negative eigenvalues, say A; > 0 and \; < 0, then it is
indefinite. This is because if we let X satisfy X; = 1 and Xx = 0,Vk # i, then
xTAx =31, \i&? > 0. Similarly we can let £ satisfy £ = 1 and % = 0,Vk # j, then
xTAx =30 \ig% < 0.

!Note that £ # 0 < x # 0.
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Matrix Calculus
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Outline

Matrix Calculus
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Matrix Calculus
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Matrix Calculus
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. Ay\_ajxo A }- "l-,a,(_"
The Gradient fus o At dnpmbice
Veckr/ oty aalas
Suppose that f : R™*" — R is a function that takes as input a matrix A of size m x n and

returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of partial
derivatives, defined as: U

A:Gxn) A OF(A)  OF(A)  Of(A)
| Sh KR SFA
.vA'f : Q"{))( n) Vaf(A) € R™" = 0Az1  0Axn T 9Az, CZ;) = i
: ST Y .
of(A)  Of(A)  Of(A) J QAU
6Am1 8Am2 6Amn
i.e., an m X n matrix with )
Of (A
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The Gradient

Note that the size of V of(A) is always the same as the size of A. So if, in particular, A is just a
vector x € R”, | ‘

)

9 (x)
Vi) =] 7 . (77:]; 2L

£- LRq — R D) 24
N —

@)

Of (x)
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The Gradient

Note that the size of Vof(A) is always the same as the size of A. So if, in particular, A is just a
vector x € R”,

Vef(x)=| 22

It follows directly from the equivaleMroperties of partial derivatives that:
o Vi(f(x)+g(x)) = Vif(x) + ng
§ frowe |
e Fort € R, V,(t f(x)) = tV,f(x

CS229 Linear Algebra Review Spring 2022
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. Aalbgone b 2d duimbie
The Hessian

CNOT kv ) Wokor — &cadar
Suppose that f : R” — R is a function that takes a vector in R"” and returns a real number.
Then the Hessian matrix with respect to x, written V2f(x) or simply as H is the n x n matrix
of partial derivatives,

X Nkl [ Pf(x)  O%f(x) . 9%f(x) 7]
- W oEEER] e
T Prlg R oRfx
o Vi eRrr = | PO BT |l ’2
O : ; . : Z; ’
- RR 2f(x)  H?f(x) 92(x) ﬁ
L Ox:0x1  OxnOx2 ~ ~Ox2
In other words, V2f(x) € R™", with
0°f(x)
2
F(x)); = .
/ (vx (X))J 6X;8Xj
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[e]e]e]e]e] lelelelele]e)
The Hessian
Suppose that f : R” — R is a function that takes a vector in R"” and returns a real number.

Then the Hessian matrix with respect to x, written V2f(x) or simply as H is the n x n matrix
of partial derivatives,

m 0%f(x) 9%f(x) 0%f(x) 1]
Ox? Ix10x2  Ox10xn
8f(x) 9%f(x) L 0?%f(x)
V2f(x) e R = | PePa 04 Pt | Jocobiom 3
PF(x)  0PF(x) 92f(x) ‘ '#W
| 9x,0x1  OxpOx2 oxz C ()F e
Note that the Hessian is always symmetric, since F .IE)

D?f(x)  0*f(x)
Ox;i0xj  OxjOx;
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Gradients of Linear Functions o) = S bk b: Nyl
£. ﬂ?”-\a R xL: Nxl

For x € R”, let f(x) = b" x for some known vector b € R”. Then

—_———

- . Jd _
f(X) = Z b,'X,' [v%j?" 7[‘ . = bb
i=1 v 3xX,
o)
of(x) 0 &
= — Y bjx; = by.
6xk 8Xk ; X k
From this we can easily see that . This should be compared to the analogous
situation in single variable calculus, where 9/(9x) ax = a.

\
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Gradients of Quadratic Function . ,"” _ 5

Now consider the quadratic function f(x) = xTAx for A € S". Remember that

f(x) = Z Z AjiXix;. Cvxjcjt-

i=1 j=1

To take the partial derivative, we'll consider the terms including x,x and x? factors separately:

of
- ) I

i=1 j=1
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Gradients of Quadratic Function

Now consider the quadratic function f(x) = x" Ax for A € S". Remember that

f(x) = ZZAUX,XJ

i=1 j=1

To take the partial derivative, we'll consider the terms including x,x and x? factors separately:

of
R DI

i=1 j=1
0
= 87Xk Z Z A,'J'X,‘X_,' + Z A,'kX,'Xk + Z Aijka + AkaE
i#k j#k i#k JF#k
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Gradients of Quadratic Function

Now consider the quadratic function f(x) = x" Ax for A € S". Remember that

0933 A
i=1 j=1
To take the partial derivative, we'll consider the terms including x,x and x? factors separately:

of
R DI

Iljl

8
= — Z A,'J'X,'Xj + Z AiXixi + Z é/:ijXj + Akkxlg

Xk | iZk 2k i~k %k ~——
h
= Z Aikxi + Z AkiXj + 2 AxkXk
i#*k k
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Gradients of Quadratic Function

Now consider the quadratic function f(x) = x" Ax for A € S". Remember that
f(x) = Z Z AjjXiX;.
i=1 j=1

To take the partial derivative, we'll consider the terms including x,x and x? factors separately:

O) 0 NSNS g .;(RP_

= ) Aixi+ Y A+ A0k
£k 7k | Ay

n n n S N
= Z Aiexi + Z Aijj =2 Z AkiXi, W&AC
i—1 j=1 i—1
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Hessian of Quadratic Functions

Finally, let's look at the Hessian of the quadratic function f(x) = x" Ax
In this case,

B2f(x) O [8f(x)] 9 [22 AéiXi] oA, =24,

Ox,Oxp - 87xk ox; | Oixk —

Therefore, it should be clear that !Vf(xTAx = 2A,’ which should be entirely expected (and again
analogous to the single-variable fact that 92/(0x?) ax? = 2a).
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Recap

VebTx=b  o(T)

V2bTx =0

VixT Ax = 2Ax (if A symmetric)

V2xT Ax = 2A (if A symmetric)
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Matrix Calculus Example: Least Squares

@ Given a full rank matrix A € RZX2, and a vector b € R such that b ¢ R(A), we want to
find a vector x such that Ax is as close as possible to b, as measured by the square of the
Euclidean norm ||Ax — b||3.

IAx—bI3- (4, )

drgtin. [ Ax 4
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Matrix Calculus Example: Least Squares

@ Given a full rank matrix A € R™*", and a vector b € R™ such that b ¢ R(A), we want to
find a vector x such that Ax is as close as possible to b, as measured by the square of the
Euclidean norm ||Ax — b||3.

T

o Using the fact that ||x||3 = x7x, we have

|Ax — b||3 = (@ b)®(42< —b)=x"ATAx—2b"Ax+b"b
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Matrix Calculus Example: Least Squares

@ Given a full rank matrix A € R™*", and a vector b € R™ such that b ¢ R(A), we want to
find a vector x such that Ax is as close as possible to b, as measured by the square of the
Euclidean norm ||Ax — b||3.

T

o Using the fact that ||x||3 = x7x, we have

|Ax — b||3 = (Ax — b) T(Ax — b) = xTATAx —2bT Ax + b" b
o Taking the gradient with respect to x we have: 10 minimiie ¥ 7 = o
Vo(xTATAx — 26T Ax+ bTb) = VxT(AT Ak — V,2b7 Ax + VxbLb
—Ne A~

= 2ATAx—2ATb _\° .
vk(%'/,,)x =@ 4)
=0T,
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Matrix Calculus Example: Least Squares

@ Given a full rank matrix A € R™*", and a vector b € R™ such that b ¢ R(A), we want to
find a vector x such that Ax is as close as possible to b, as measured by the square of the
Euclidean norm ||Ax — b||3.

Tx, we have

o Using the fact that ||x||3 = x
|Ax — b||3 = (Ax — b) T(Ax — b) = xTATAx —2bT Ax + b" b
o Taking the gradient with respect to x we have:
Vi(xTATAx —2bTAx + b"b) = V,x"ATAx —V,2b" Ax+ V,b" b
= 24TAx—2ATh =o
@ Setting this last expression equal to zero and solving for x gives the normal equations

wwxoﬂims a /x:(ATA)_lAle-)
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