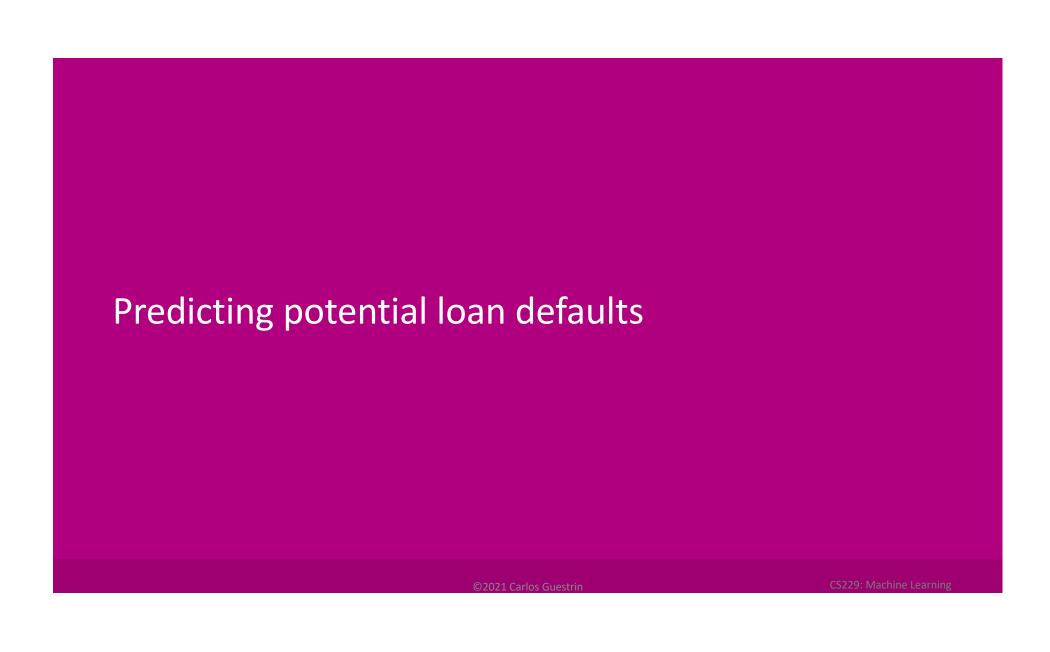


Decision Trees

CS229: Machine Learning Carlos Guestrin Stanford University

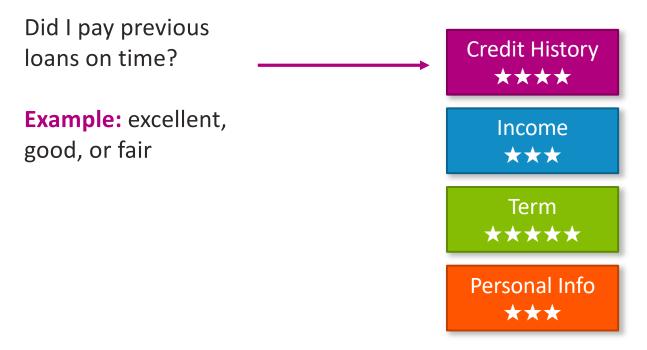
Slides include content developed by and co-developed with Emily Fox

©2021 Carlos Guestrin

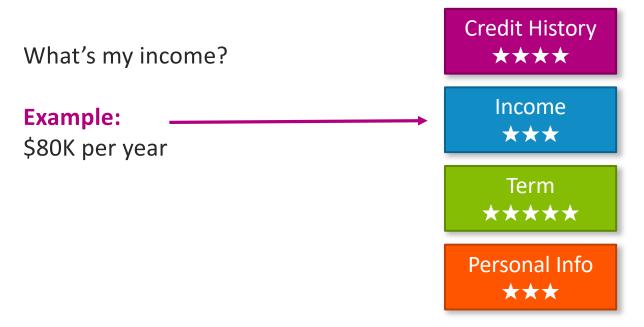


What makes a loan risky?

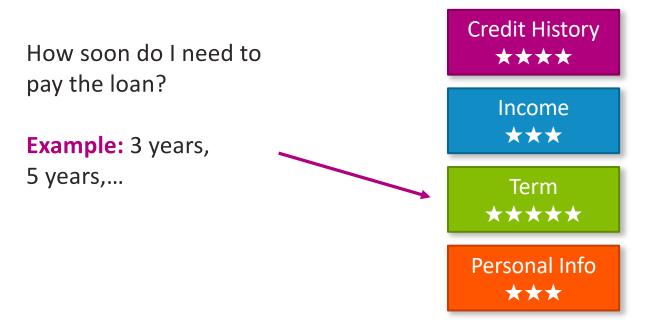
Credit history explained



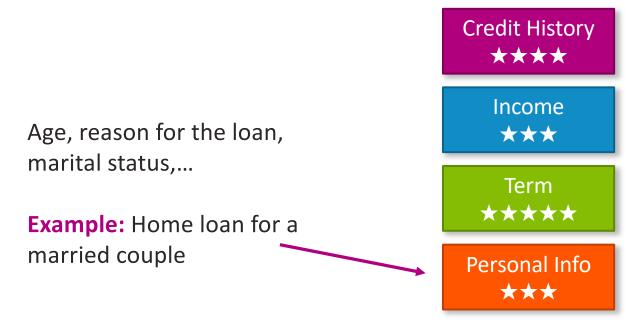
Income



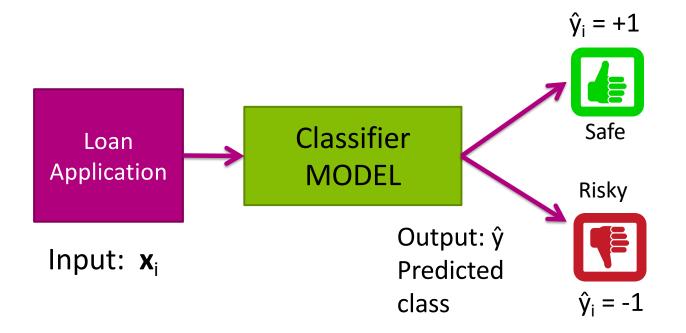
Loan terms



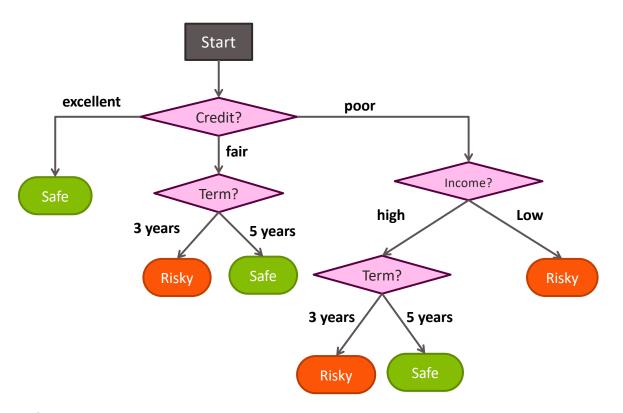
Personal information



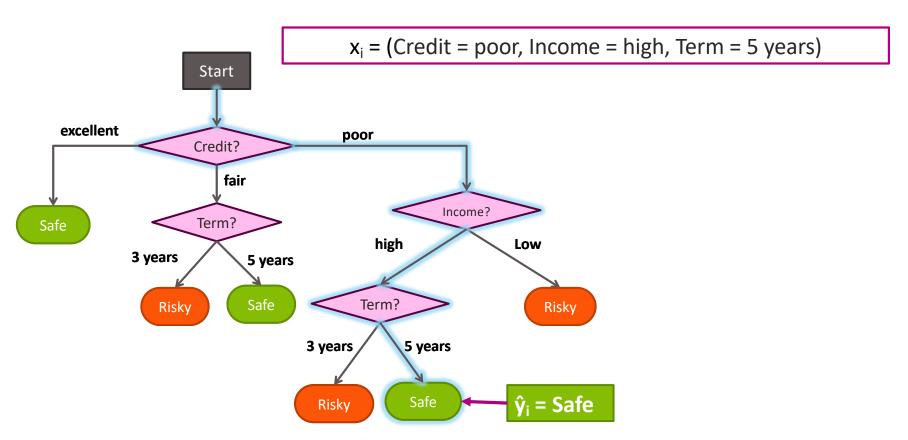
Classifier review

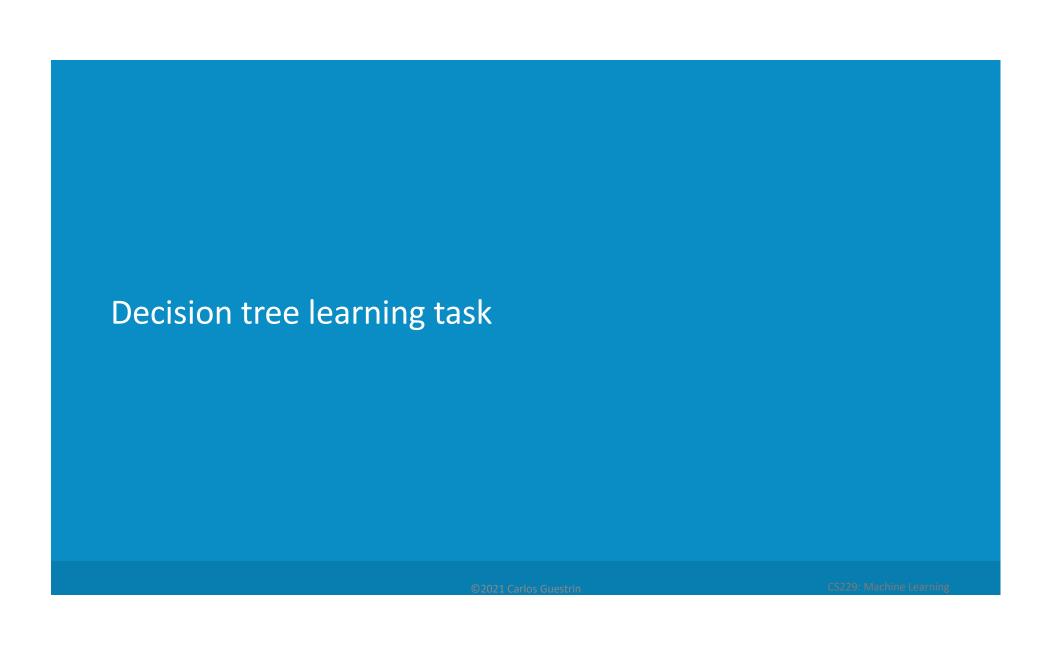


This module ... decision trees



Scoring a loan application

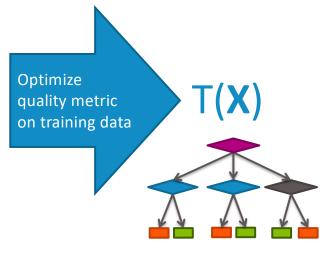




Decision tree learning problem

Training data: N observations (x_i, y_i)

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe



Quality metric: Classification error

Error measures fraction of mistakes

Error = # incorrect predictions # examples

Best possible value : 0.0

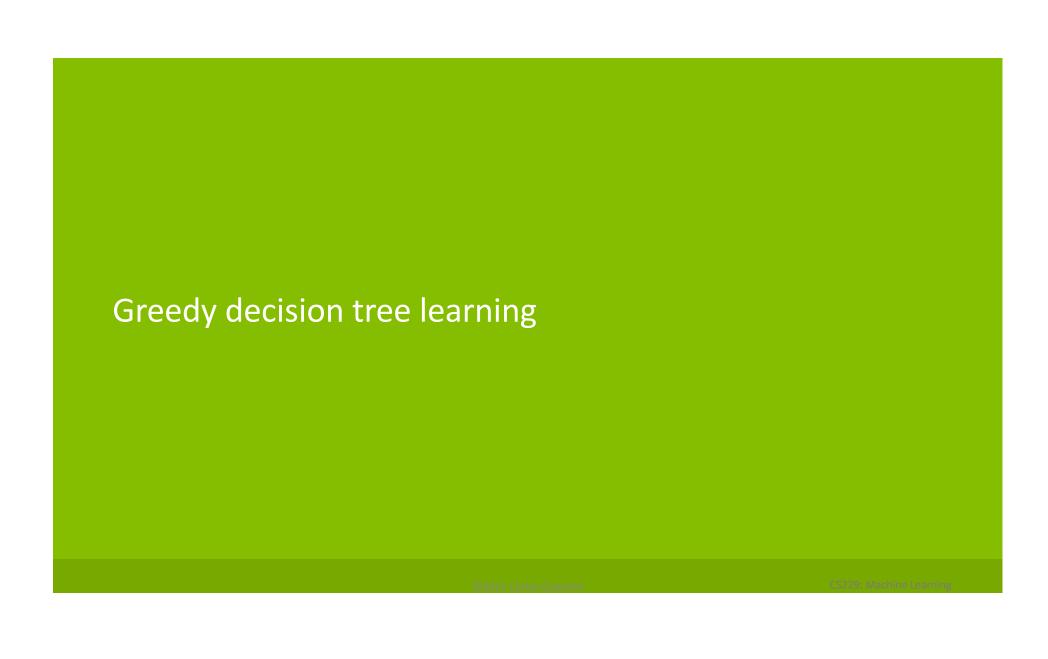
- Worst possible value: 1.0

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard!

 $T_1(X)$ $T_2(X)$ $T_3(X)$ $T_4(X)$ $T_5(X)$ $T_6(X)$

Learning the smallest decision tree is an *NP-hard problem* [Hyafil & Rivest '76]



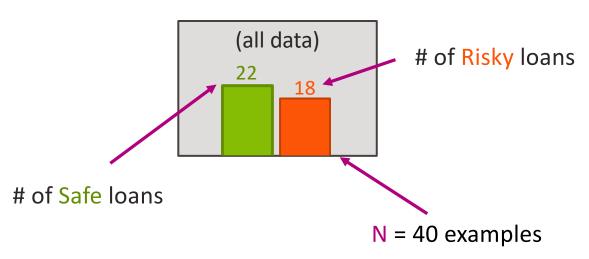
Our training data table

Assume N = 40, 3 features

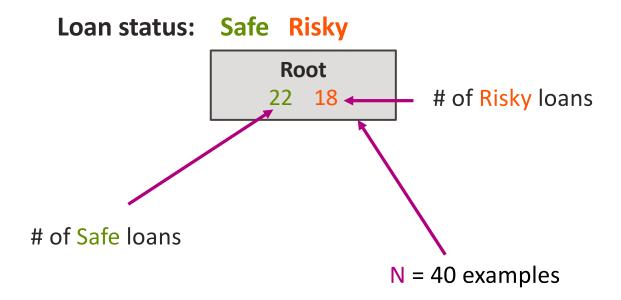
Term	Income	у
3 yrs	high	safe
5 yrs	low	risky
3 yrs	high	safe
5 yrs	high	risky
3 yrs	low	risky
5 yrs	low	safe
3 yrs	high	risky
5 yrs	low	safe
3 yrs	high	safe
	3 yrs 5 yrs 3 yrs 5 yrs 3 yrs 5 yrs 5 yrs 5 yrs 5 yrs	3 yrs high 5 yrs low 3 yrs high 5 yrs high 3 yrs low 5 yrs low 3 yrs low 5 yrs low 5 yrs low

Start with all the data

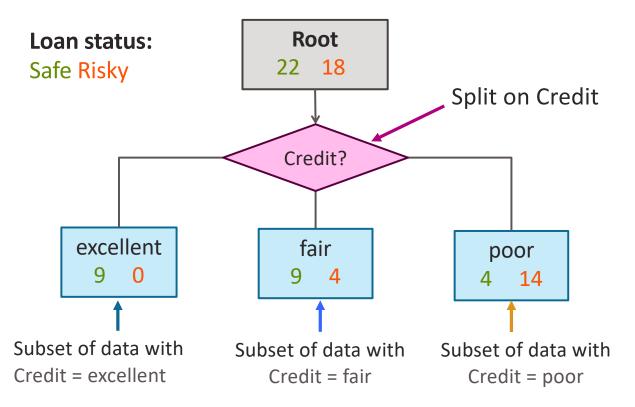
Loan status: Safe Risky



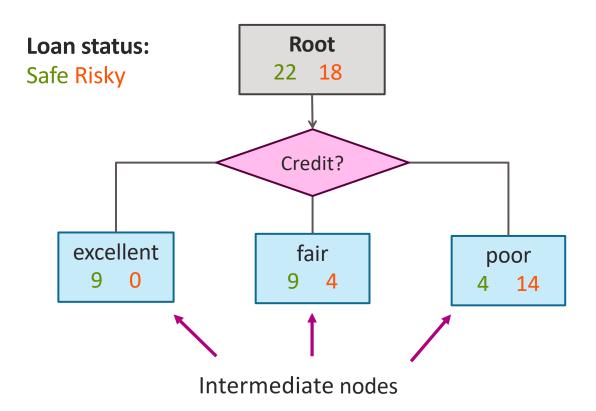
Compact visual notation: Root node



Decision stump: Single level tree

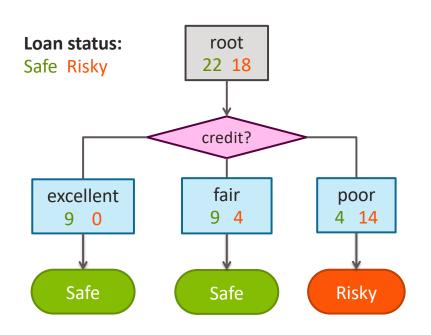


Visual notation: Intermediate nodes

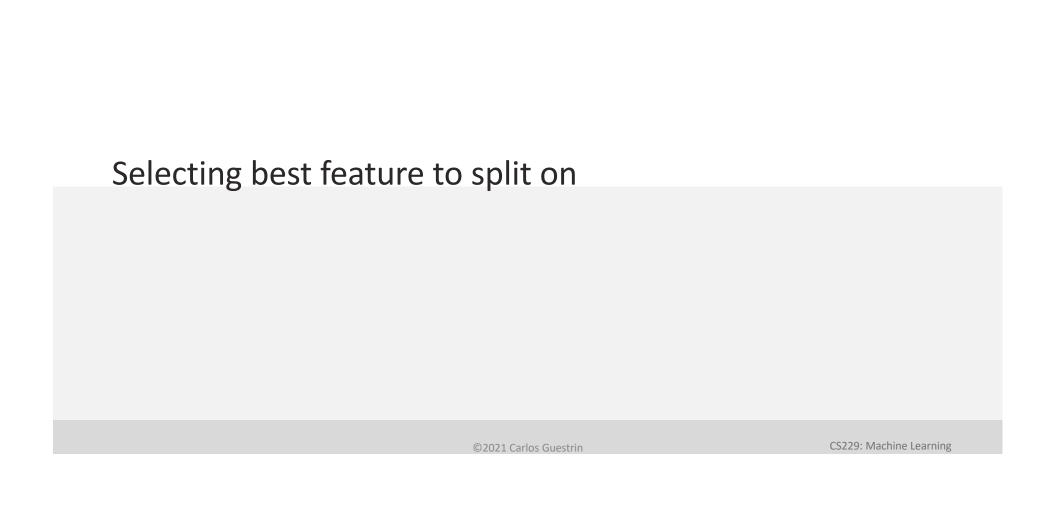


21 ©2021 Carlos Guestrin CS229: Machine Learning

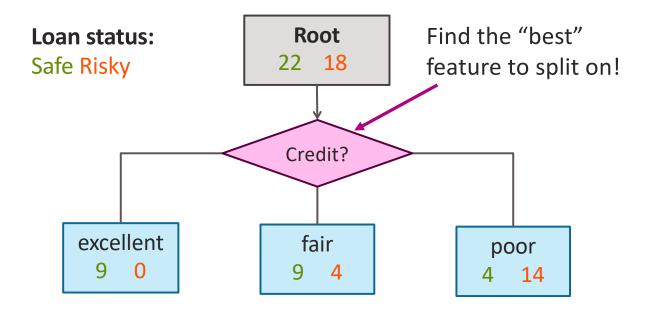
Making predictions with a decision stump



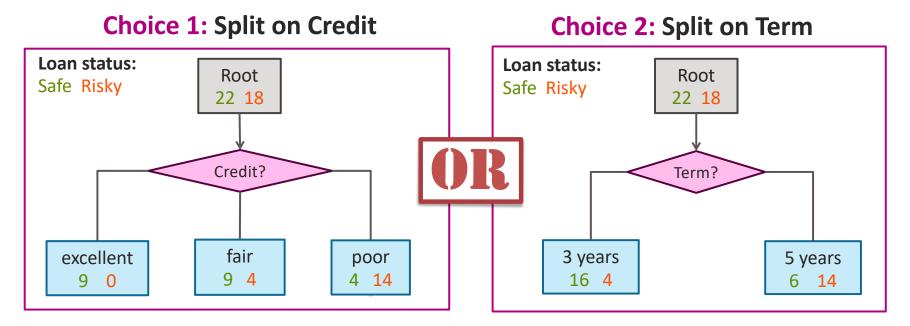
For each intermediate node, set \hat{y} = majority value



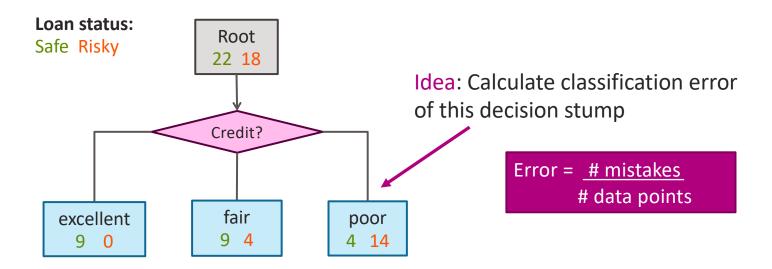
How do we learn a decision stump?



How do we select the best feature?

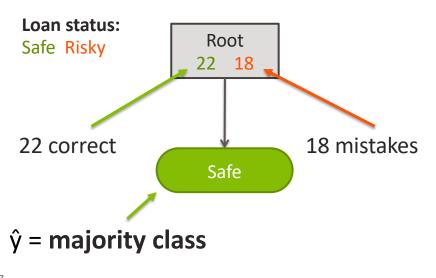


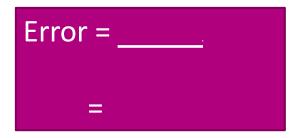
How do we measure effectiveness of a split?



Calculating classification error

- Step 1: \hat{y} = class of majority of data in node
- Step 2: Calculate classification error of predicting ŷ for this data

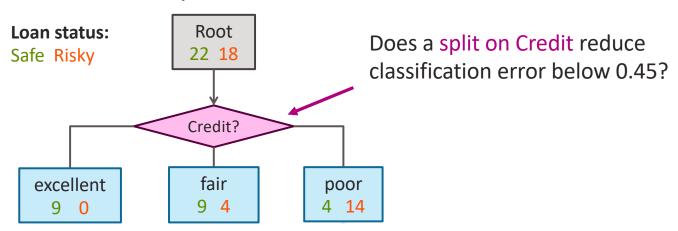




Tree	Classification error
(root)	0.45

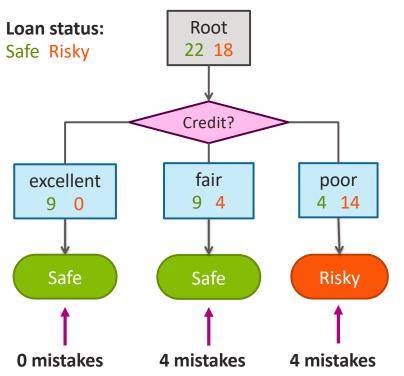
Choice 1: Split on Credit history?

Choice 1: Split on Credit



Split on Credit: Classification error

Choice 1: Split on Credit

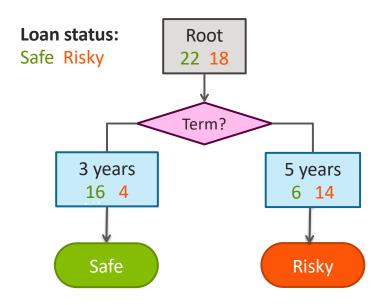


Error =	<u>.</u>
=	

Tree	Classification error
(root)	0.45
Split on credit	0.2

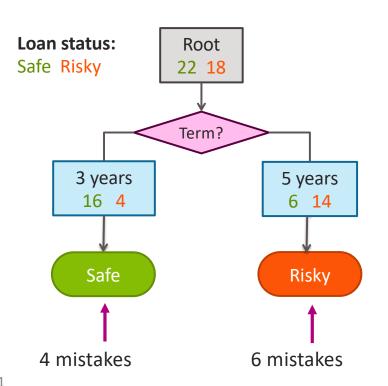
Choice 2: Split on Term?

Choice 2: Split on Term



Evaluating the split on Term

Choice 2: Split on Term



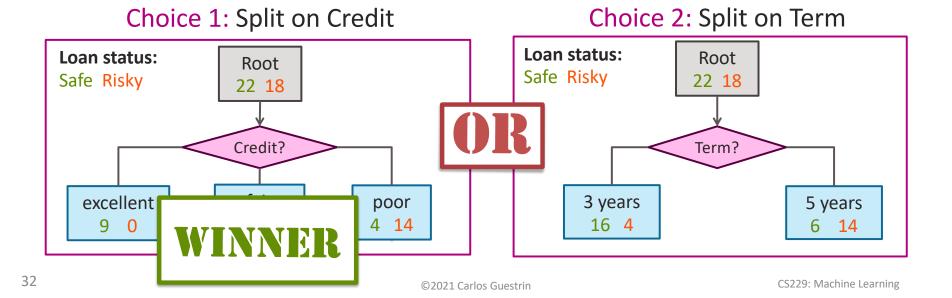
Error =	
=	

Tree	Classification error
(root)	0.45
Split on credit	0.2
Split on term	0.25

31

Choice 1 vs Choice 2: Comparing split on Credit vs Term

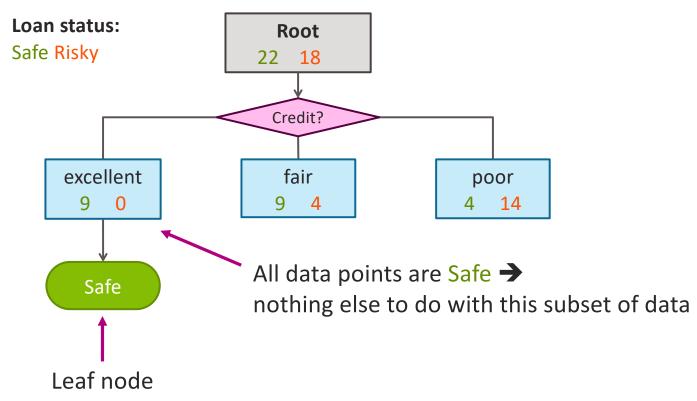
Tree	Classification error
(root)	0.45
split on credit	0.2
split on loan term	0.25



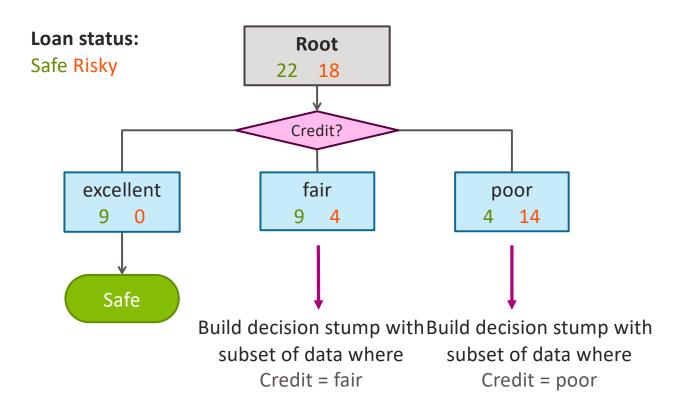
Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error of split
- Chose feature h*(x) with lowest classification error

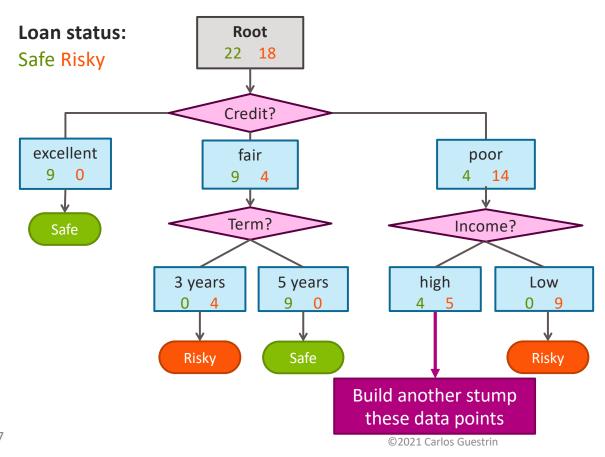
We've learned a decision stump, what next?



Tree learning = Recursive stump learning

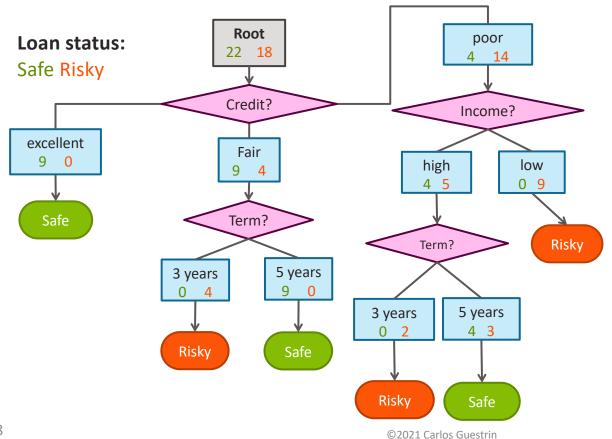


Second level



37

Final decision tree



38

Simple greedy decision tree learning

Pick best feature to split on

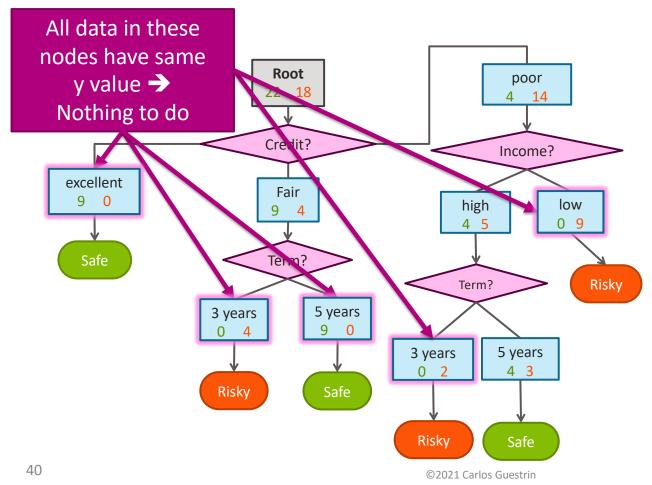
Learn decision stump with this split

For each leaf of decision stump, recurse

When do we stop???

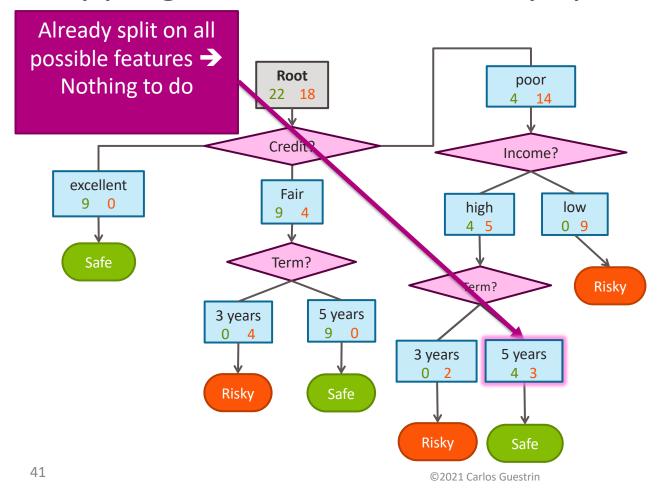
39

Stopping condition 1: All data agrees on y



CS229: Machine Learning

Stopping condition 2: Already split on all features



Greedy decision tree learning

Step 1: Start with an empty tree

Step 2: Select a feature to split data

For each split of the tree:

 Step 3: If nothing more to do, make predictions

 Step 4: Otherwise, go to Step 2 & continue (recurse) on this split Pick feature split leading to lowest classification error

Stopping conditions 1 & 2

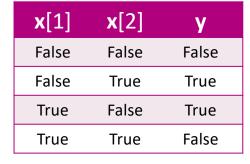
Recursion

Is this a good idea?

Proposed stopping condition 3:
Stop if no split reduces the classification error

Stopping condition 3:

Don't stop if error doesn't decrease???



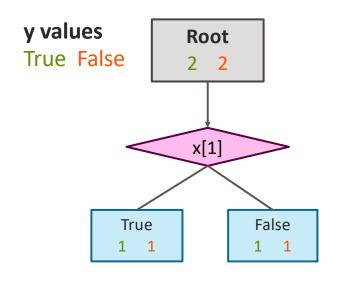
y values
True False

Root 2 2

Tree	Classification error
(root)	0.5

Consider split on x[1]

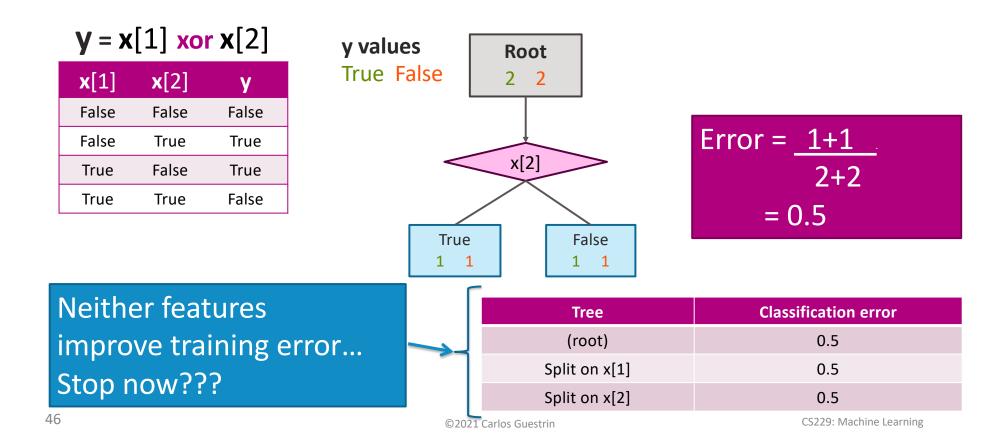
x [1]	x [2]	У
False	False	False
False	True	True
True	False	True
True	True	False



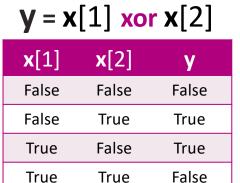
Error =	<u>:</u>
=	

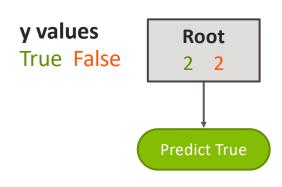
Tree	Classification error
(root)	0.5
Split on x[1]	0.5

Consider split on x[2]



Final tree with stopping condition 3





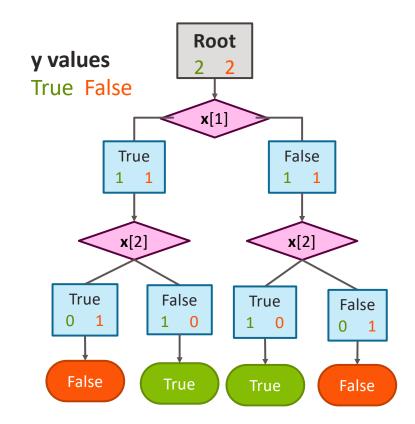
Tree	Classification error
with stopping condition 3	0.5

Without stopping condition 3

Condition 3 (stopping when training error doesn't' improve) is not recommended!

x [1]	x [2]	У
False	False	False
False	True	True
True	False	True
True	True	False

Tree	Classification error
with stopping condition 3	0.5
without stopping condition 3	

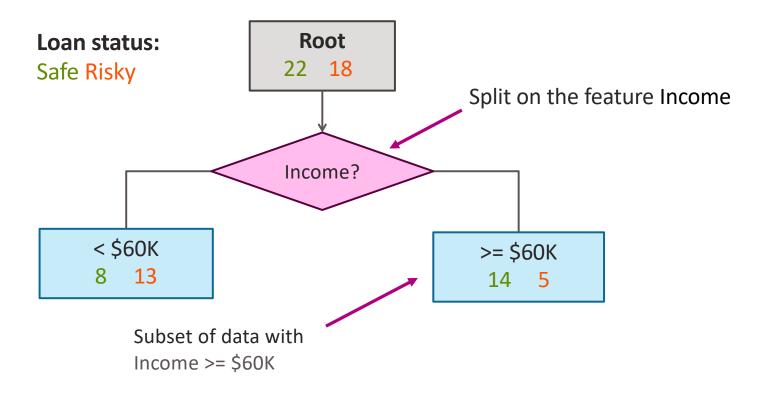


CS220: Machine Learnin

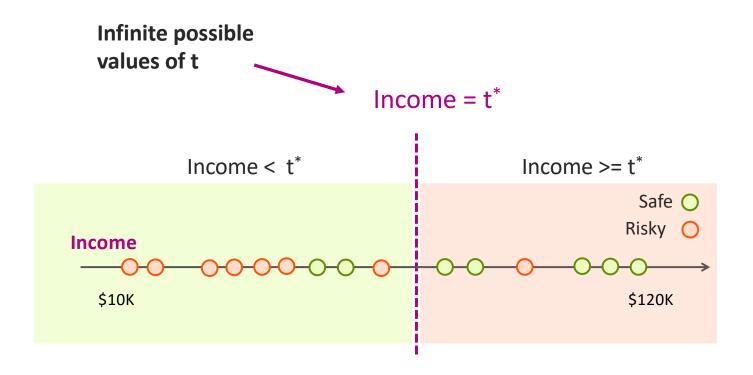
How do we use real values inputs?

Income	Credit	Term	У
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Threshold split

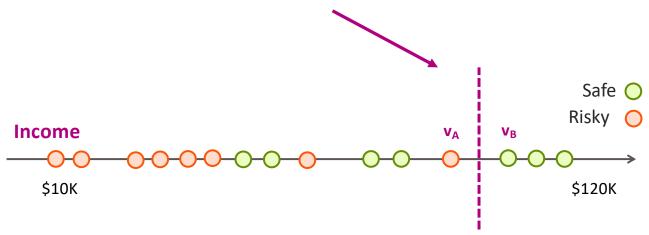


Finding the best threshold split

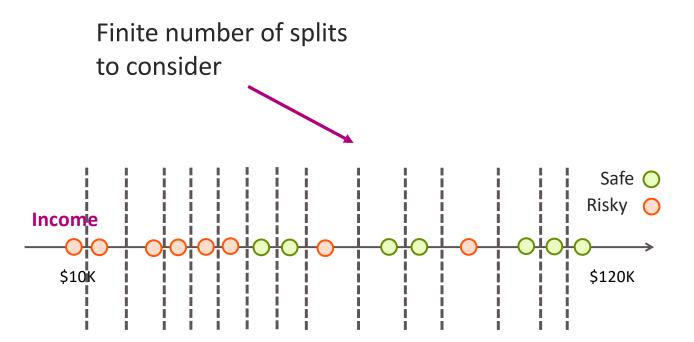


Consider a threshold between points

Same classification error for any threshold split between v_A and v_B



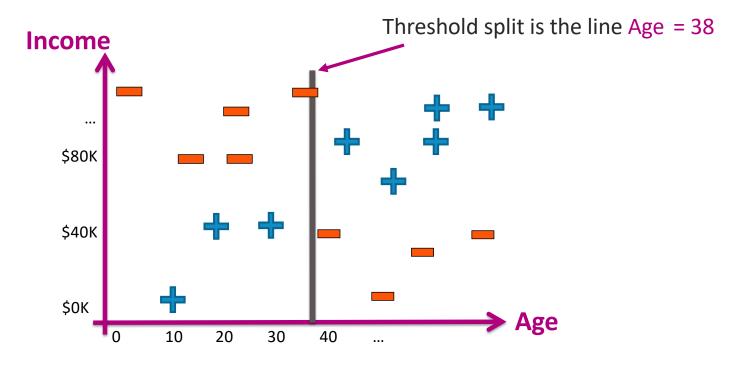
Only need to consider mid-points



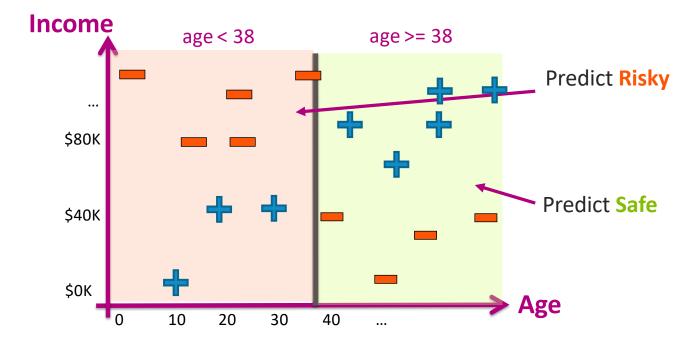
Threshold split selection algorithm

- Step 1: Sort the values of a feature h_j(x):
 Let {v₁, v₂, v₃, ... v_N} denote sorted values
- Step 2:
 - For i = 1 ... N-1
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error for treshold split $h_j(x) \ge t_i$
 - Chose the t* with the lowest classification error

Visualizing the threshold split

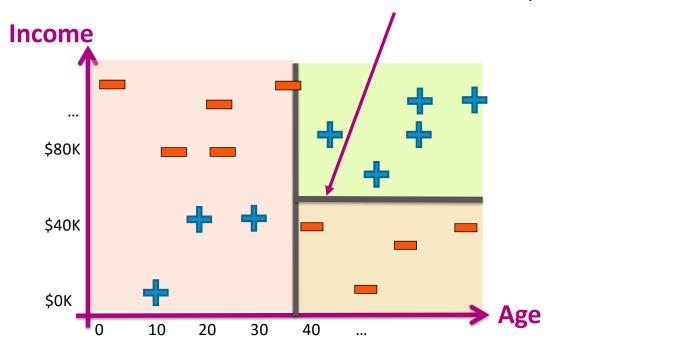


Split on Age >= 38

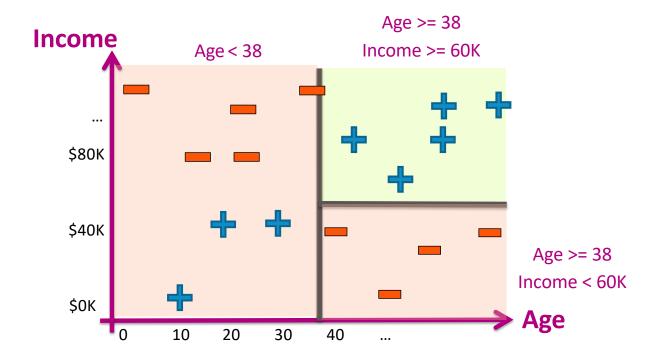


Depth 2: Split on Income >= \$60K

Threshold split is the line Income = 60K

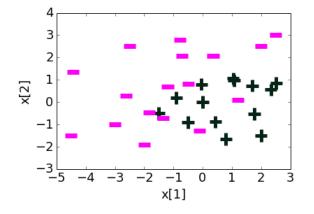


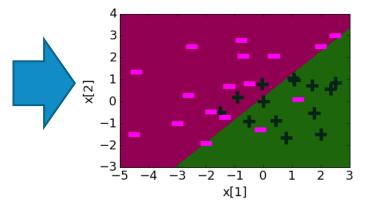
Each split partitions the 2-D space



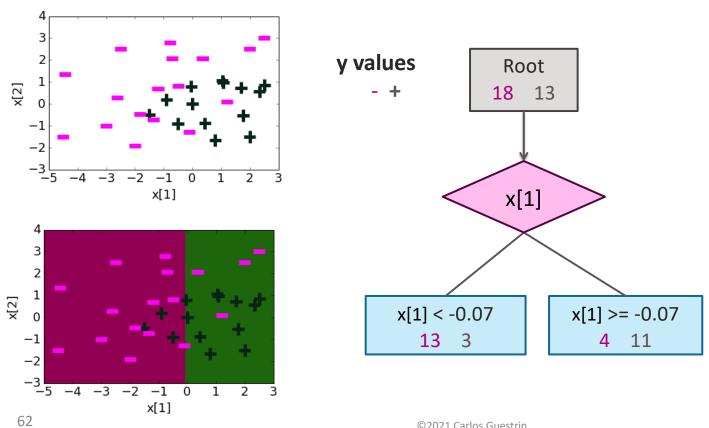
Logistic regression

Feature	Value	Weight Learned
$h_0(x)$	1	0.22
h ₁ (x)	x[1]	1.12
h ₂ (x)	x[2]	-1.07



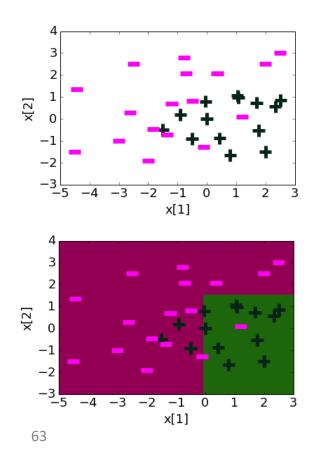


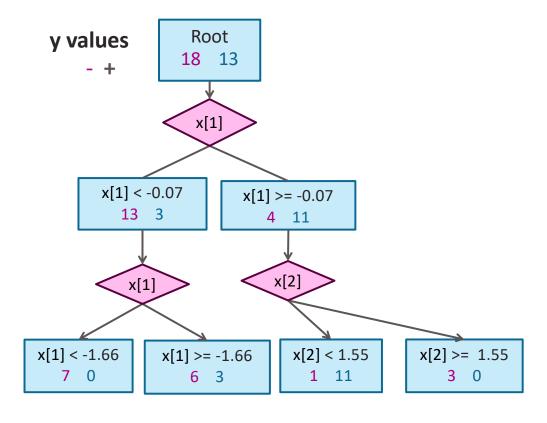
Depth 1: Split on x[1]



CS229: Machine Learning ©2021 Carlos Guestrin

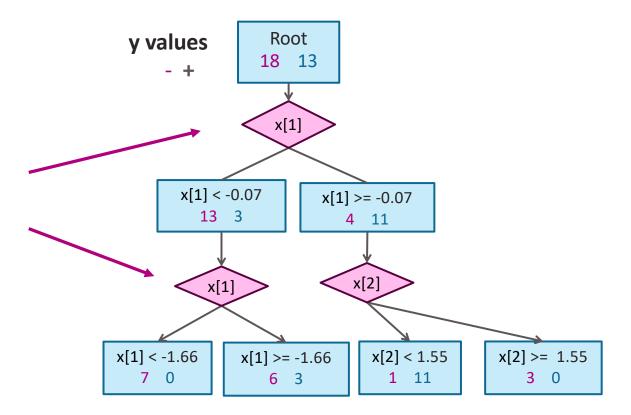
Depth 2



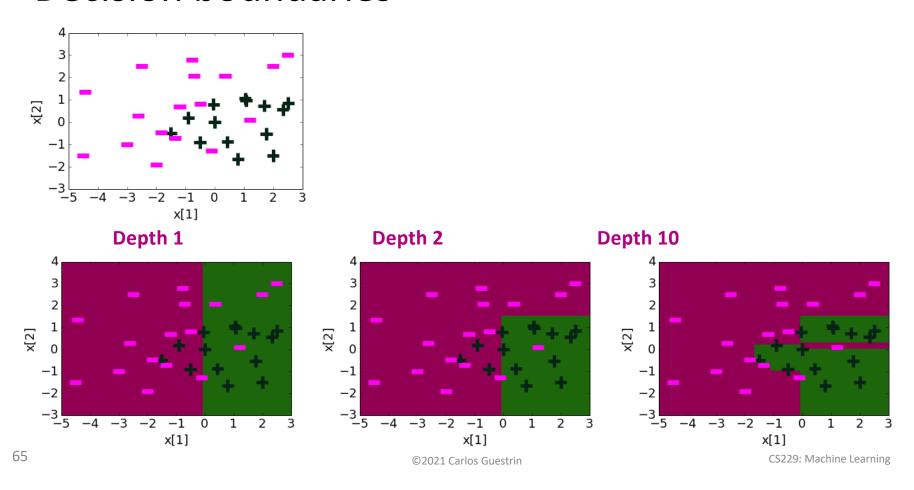


Threshold split caveat

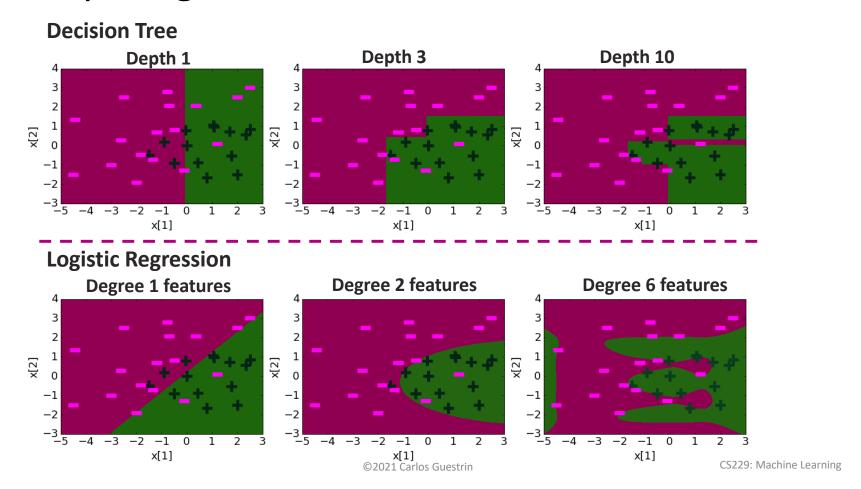
For threshold splits, same feature can be used multiple times

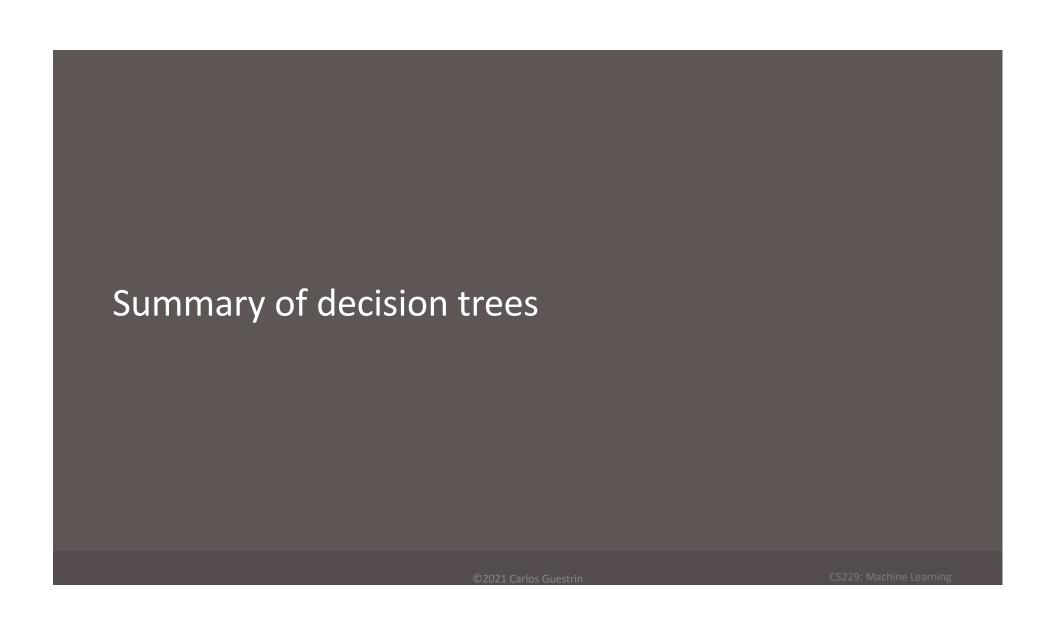


Decision boundaries



Comparing decision boundaries





What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions
- Tackle continuous and discrete features