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Predicting potential loan defaults




What makes a loan risky?

| want a to buy a
new house!

Credit History
% % %k k

Income
.00 ¢

Term
1. 8.0 .6.0.¢

Loan

Application Personal Info

- * Kk
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Credit history explained

Did | pay previous
loans on time? >

Credit History

1.8.8. 8 ¢
Example: excellent, Income
good, or fair ) & & ¢

Term
1 0.0 6.0 ¢

Personal Info
* %k
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Income

Credit History
What’s my income? 1. 0.8.8 ¢

Income

Example:
S80K per year

* &k

Term
1 0.0 6.0 ¢

Personal Info
* %k
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Loan terms

Credit History
How soon do | need to ' 0. 6.6 ¢

pay the loan?

Income
.00 ¢

Example: 3 years,
5 years,... \ Term

1. 0. 8.8, 8

Personal Info

* Kk
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Personal information

Credit History
1. 8. 8. 8¢

Income
Age, reason for the loan, * %k

marital status,...
Term

Example: Home loan for a kokokok

married couple \ Personal Info

* Kk
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Classifier review

Loan
Application
Output: y
Input: X Predicted
class vi=-1
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This module ... decision trees

excellent poor
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Scoring a loan application

x; = (Credit = poor, Income = high, Term =5 years)

excellent poor
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Decision tree learning task
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Decision tree learning problem

Training data: N observations (x,,y;)

Credit Term Income
excellent 3yrs high safe
fair 5yrs low risky
fair 3yrs high safe
poor 5yrs high risky
excellent 3yrs low risky
fair 5yrs low safe
poor 3yrs high risky
poor 5yrs low safe
fair 3yrs high safe

Optimize
quality metric

on training data
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Quality metric: Classification error

* Error measures fraction of mistakes

Error = # incorrect predictions

# examples

— Best possible value : 0.0
— Worst possible value: 1.0
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How do we find the best tree?

Exponentially large number of possible trees

. . Learning the smallest
makes decision tree learning hard! 8

decision tree is an
NP-hard problem

T1(X) T,(X) T3(X) [Hyafil & Rivest '76]
T4(X) Ts(X) T¢(X)
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Greedy decision tree learning
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Our training data table

Assume N =40, 3 features

Credit Term Income y
excellent 3yrs high safe
fair 5yrs low risky
fair 3yrs high safe
poor 5yrs high risky
excellent 3yrs low risky
fair 5yrs low safe
poor 3yrs high risky
poor 5yrs low safe
fair 3yrs high safe

©2021 Carlos Guestrin

CS229: Machine Learning



Start with all the data

Loan status: Safe Risky

(all data)
22 —

/. 18
# of Safe loans \

N = 40 examples

_ # of Risky loans
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Compact visual notation: Root node

Loan status: Safe Risky

Root
22 18 «——— # of Risky loans

# of Safe loans

N =40 examples
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Decision stump: Single level tree

Loan status: Root
Safe Risky 22 18

A/ Split on Credit
\Cre’V

excellent fair poor
9 0 9 4 4 14
Subset of data with Subset of data with  Subset of data with
Credit = excellent Credit = fair Credit = poor
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Visual notation: Intermediate nodes

Loan status:
Safe Risky

Root
22 18

/\

excellent
9 0

AN

Intermediate nodes

\(:re’(y

fair
9 4

1

poor

/
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Making predictions with a decision stump

Loan status: root
Safe Risky 22 18
credit? ) '
For each intermediate node,
excellent fair poor set y = majority value
9 0 9 4 4 14

o oo
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Selecting best feature to split on
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How do we learn a decision stump?

Loan status: Root Find the “best”
Safe Risky 22 18 feature to split on!

pred

excellent fair poor
9 0 9 4 4 14

24 ©2021 Carlos Guestrin CS229: Machine Learning



25

How do we select the best feature?

Choice 1: Split on Credit

Choice 2: Split on Term

Loan status:
Safe Risky

Root
22 18

excellent
9 0

OR|

poor
4 14

Loan status:
Safe Risky

Root
22 18

3 years
16 4

5 years
6 14
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How do we measure effectiveness of a split?

Loan status:
Safe Risky

excellent
9 0

Root
22 18

< cresir_—>

fair
9 4

Idea: Calculate classification error
of this decision stump

/ Error = # mistakes
# data points

poor
4 14
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Calculating classification error

* Step 1:y = class of majority of data in node

* Step 2: Calculate classification error of predicting y for this
data

Loan status:
Safe Risky

22 correct 18 mistakes

Tree Classification error

(root) 0.45

/

¥ = majority class
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Choice 1: Split on Credit history?

Choice 1: Split on Credit

Loan status: Root . .
Safe Risky 27 18 Does.a} sp!lt on Credit reduce
classification error below 0.45?
Credit?
excellent fair poor
9 0 9 4 4 14
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Split on Credit: Classification error

Choice 1: Split on Credit

Loan status: Root
Safe Risky 22 18
Credit?
excellent fair poor
9 0 9 4 4 14
Tree Classification error
(root) 0.45
1 I 1 Split on credit 0.2
0 mistakes 4 mistakes 4 mistakes
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Choice 2: Split on Term?

Choice 2: Split on Term

Loan status:
Safe Risky

Root
22 18

3 years
16 4

5 years
6 14
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Evaluating the split on Term

Choice 2: Split on Term

Loan status: Root
Safe Risky 22 18
3 years 5 years
16 4 6 14
Classification error
(root) 0.45
1 1 Split on credit 0.2

4 mistakes 6 mistakes Split on term 0.25
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coowce T v haice 2
error

Comparing split on (root] 0.45
Credit vs Term split on credit 0.2
split on loan term 0.25
Choice 1: Split on Credit Choice 2: Split on Term
Loan status: Root Loan status: Root
Safe Risky 27 18 Safe Risky 22 18
excellent I poor 3 years 5 years
9 0 4 14 16 4 6 14
WINNER
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Feature split selection algorithm

* Given a subset of data M (a node in a tree)

* For each feature h;(x):
1. Split data of M according to feature h;(x)

2. Compute classification error of split

* Chose feature h*(x) with lowest classification error

©2021 Carlos Guestrin
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Recursion & Stopping conditions
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We’ve learned a decision stump, what next?

Loan status: Root
Safe Risky 22 18

¢

excellent fair poor
9 4 4 14

9 O
é\ All data points are Safe =
1 nothing else to do with this subset of data

Leaf node
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Tree learning = Recursive stump learning

Loan status:
Safe Risky

Root
22 18

/Celdit?\

excellent
9 0

T
fair poor
9 4 4 14

| |

Build decision stump withBuild decision stump with
subset of data where subset of data where
Credit = fair Credit = poor
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Second level

Loan status: Root
Safe Risky 22 18

/cjdm\

\r/
excellent fair poor
9 0 9 4 4 14
y
3 years 5 years high
4 5

e | e

Build another stump

these data points
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Final decision tree

Loan status:

excellent
9 0

Root
22 18

Safe Risky
@

Fair
9 4

poor

==

low
0 9

3 years

5 years
4 3

=
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Simple greedy decision tree learning

Pick best feature to split on

Learn decision stump with this split

For each leaf of decision stump, recurse

When do we stop???

©2021 Carlos Guestrin
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Stopping condition 1: All data agrees ony

All data in these
nodes have same
y value = \

Nothing to do

excellent
9 0
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Stopping condition 2: Already split on all features

Already split on all
possible features =»
Nothing to do

excellent
9 0
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Greedy decision tree learning

e Step 1: Start with an empty tree

* Step 2: Select a feature to split data

For each split of the tree:

T~

e Step 3: If nothing more to do,
make predictions

* Step 4: Otherwise, go to Step 2 &
continue (recurse) on this split

©2021 Carlos Guestrin

Pick feature split
leading to lowest
classification error

Stopping conditions

1&2

Recursion
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Is this a good idea?

Proposed stopping condition 3:
Stop if no split reduces the
classification error

43 ©2021 Carlos Guestrin
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Stopping condition 3:
Don’t stop if error doesn’t decrease???

Y = x[1] xor x[2] y values Root
x[1]  x[2] y True False 2 2
False False False
False True True
True False True
True True False

Tree Classification error

(root) 0.5
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Consider split on x[1]

Y = x[1] xor x[2] y values Root
x[1]  x[2] y True False 2 2
False False False
False True True
True False True
True True False
True False
1 1 1 1
Classification error
(root) 0.5
Split on x[1] 0.5
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Consider split on x[2]

Y = x[1] xor x[2] y values Root
x[1] x[2] y True False 2 2
False False False
False True True Error = 1+1 :
True False True 2+2
True True False
=0.5
True False
1 1 1 1
Neither features
improve training error... (root) 0-5
Split on x[1] 0.5
Stop nOW??? Split on x[2] 0.5

46 ©20271 Carlos Guestrin CS229: Machine Learning



Final tree with stopping condition 3

Y = x[1] xor x[2] y values Root
x[1]  x[2] y True False 2 2
False False False l
False True True
True False True
True True False
error
with stopping 0.5
condition 3
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Without stopping condition 3

Condition 3 (stopping when training error doesn’t’ improve) is not recommended!

Y = x[1] xor x[2] y values ';°°2t

False False False @

False True True True False

True False True 11 IR

True True False
e R

error True False True False

with stopping 0.5 o ! 0 1

1 O 1 O
condition 3
without stopping
condition 3
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Decision tree learning:

Real valued features
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How do we use real values inputs?

Income

$105 K
$112 K
S73 K
S69 K
$217 K
$120 K
$64 K
$340 K
$60 K

Credit Term y
excellent 3yrs Safe
good 5yrs Risky
fair 3yrs Safe
excellent 5yrs Safe
excellent 3yrs Risky
good 5yrs Safe
fair 3yrs Risky
excellent 5yrs Safe
good 3yrs Risky

©2021 Carlos Guestrin
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Threshold split

Loan status:
Safe Risky

Root
22 18

< S60K
8 13

Subset of data with

Income >= S60K

Split on the feature Income

>= S60K
14 5

©2021 Carlos Guestrin
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Finding the best threshold split

Infinite possible

values of t \

Income =t~
:
Income < t” I Income >=t"

|
: Safe O
: Risky O

Income :

020 0,000 000, —0O-0—O o Oo-0——
$10K I $120K

l
1
1

©2021 Carlos Guestrin
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Consider a threshold between points

Same classification error for any
threshold split between v, and v,

1
: Safe O
: Risky O
Income Va | Ve
020, 0202000000 o O0——O0O——+-000——
$10K E $120K
1
|
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Only need to consider mid-points

Finite number of splits

to consider

Safe O
Risky O
$120K

1

1

l
Incom:e

1

1
10K

1

1

1

ing

CS229: Machine Learni
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Threshold split selection algorithm

* Step 1: Sort the values of a feature h;(x) :
Let {v,, v,, V3, ... v} denote sorted values
* Step 2:
—Fori=1..N-1
 Consider split t; = (v; + v;,4) / 2
* Compute classification error for treshold split hy(x) >=t;
— Chose the t* with the lowest classification error

©2021 Carlos Guestrin
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Visualizing the threshold split

Threshold split is the line Age =38

Incomi _—
= + &

$80K + +
S40K

SOK
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Split on Age >= 38

$80K

S40K

SOK

©2021 Carlos Guestrin

CS229: Machine Learning



Depth 2: Split on Income >= S60K

Threshold split is the line Income = 60K

Income
= +
$80K mm = +

S40K

SOK
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Each split partitions the 2-D space

Income
A

$80K

S40K

SOK

Age >= 38
Income >= 60K

+ +
t &

Age >= 38
Income < 60K

Age
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Decision trees vs logistic regression:

Example




Logistic regression

Value Weight
Learned

ho(x) 1 0.22
h1(x) x[1] 1.12
ha(x) x[2] -1.07
4
3t - =
5l - - — -
— 117 +*
~ C o =F
< 0} - 4= = - #
4 - st
o™ - + +
-5 -4 -3 -2 -1 O 1 2 3
x[1]
61

-3
~5 -4 -3 -2 -1 0

x[1]

©2021 Carlos Guestrin
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x[2]

Depth 1: Split on x[1]

4

3f -

5l = - - =
1= &

of - + + ¥
1 - "k +_+ +
20 - + +
5 4 -3 -2 -1 0 1 2 3

x[1]

35-4 3 2 -1 0
x[1]

62

1

2

3

y values Root
-+ 18 13
x[1] < -0.07 x[1] >=-0.07
13 3 4 11

©2021 Carlos Guestrin
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x[2]

x[2]

- E i 7
5 4 -3 -2 -1 0 1 2 3

x[1]

y values Root
oy 18 13
x[1] < -0.07 x[1] >= -0.07
13 3 4 11
x[1]<-1.66 | | x[1]>=-1.66 || x[2]<1.55 x[2] >= 1.55
7 0 6 3 1 11 3 0
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Threshold split caveat

y values Root
. 18 13
For threshold splits, /
x[1] < -0.07 X[1] >= -0.07
same feature can be A " 11
used multiple times \
x[11<-1.66 | | x[1]>=-1.66 || x[21<1.55 X[2] >= 1.55
7 0 6 3 1 11 3 0
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Decision bounc

x[2]

4
37 -
5l - - - =
of - + 3 = ¥
Y - + +
=57 3 21T 0 1 2
x[1]
Depth 1

x[1]

daries

Depth 2
4
3
2
— 1
o
X 0
-1
-2
3504 03 =2 -1 0
x[1]

©2021 Carlos Guestrin
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3

Depth 10

x[2]

o H N W b

-1

-2

3504 =3 =2 -1 0
x[1]

1

2

3
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Comparing decision boundaries

Decision Tree

. Depth 1 . Depth 3 . Depth 10
3 3 3
2 2 2
—_ 1 — —_ 1
N N )
X 0 X 0 X 0
-1 -1 -1
-2 -2 -2
B350 03 =2 =1 0 354 =3 =2 -1 0 3 3504 -3 =2 -1 0 3
x[1] x(1] x[1]
Logistic Regression
Degree 1 features Degree 2 features Degree 6 features
4 4 4
3 3 3
2 2 2
—_ 1 1 —_ 1
o~ (o]
< 0 0 X 0
-1 -1
-2 =2
-3 -3
-4 -3 -2 -1 O 1 2 3 -5 -4 -3 -2 -1 O 1 2 3 -5 -4 -3 -2 -1 O 1 2 3

x[1]

x[1] x[1] _ .
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Summary of decision trees
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What you can do now

Define a decision tree classifier
Interpret the output of a decision trees
Learn a decision tree classifier using greedy algorithm

Traverse a decision tree to make predictions
— Majority class predictions

Tackle continuous and discrete features
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