

CS229: Machine Learning Carlos Guestrin Stanford University Slides include content developed by and co-developed with Emily Fox

©2022 Carlos Guestrin

Simple (weak) classifiers are good!

Finding a classifier that's just right

©2022 Carlos Guestrin

Boosting question

©2022 Carlos Guestrin

Ensemble classifier

©2022 Carlos Guestrir

©2022 Carlos Guestrin

Ensemble methods: Each classifier "votes" on prediction

CS229: Machine Learning

Ensemble classifier in general

- Goal:
 - Predict output y
 - Either +1 or -1
 - From input **x**
- Learn ensemble model:
 - Classifiers: $f_1(x), f_2(x), ..., f_T(x)$
 - Coefficients: $\hat{w}_1, \hat{w}_2, ..., \hat{w}_T$
- Prediction:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

CS229: Machine Learning

10

©2022 Carlos Guestrin

Boosting

©2022 Carlos Guestrir

Training a classifier

Learning decision stump

Income	У
\$130K	Safe
\$80K	Risky
\$110K	Risky
\$110K	Safe
\$90K	Safe
\$120K	Safe
\$30K	Risky
\$60K	Risky
\$95K	Safe
\$60K	Safe
\$98K	Safe
	Income \$130K \$80K \$110K \$110K \$90K \$120K \$30K \$60K \$95K \$60K \$98K

©2022 Carlos Guestrin

Boosting = Focus learning on "hard" points

©2022 Carlos Guestrin

Learning on weighted data: More weight on "hard" or more important points

- Weighted dataset:
 - Each \mathbf{x}_i, y_i weighted by $\boldsymbol{\alpha}_i$
 - More important point = higher weight α_i
- Learning:
 - Data point i counts as α_i data points
 - E.g., $\alpha_i = 2 \rightarrow \text{count point twice}$

Learning a decision stump on weighted data

16

Boosting = Greedy learning ensembles from data

CS229: Machine Learning

AdaBoost algorithm

©2022 Carlos Guestrin

AdaBoost: learning ensemble

[Freund & Schapire 1999]

- Start with same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i

– Compute coefficient \hat{w}_t

– Recompute weights α_i

• Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

CS229: Machine Learning

©2022 Carlos Guestrin

Computing coefficient \hat{w}_t

©2022 Carlos Guestrin

AdaBoost: Computing coefficient \hat{w}_t of classifier $f_t(x)$

- $f_t(x)$ is good $\rightarrow f_t$ has low training error
- Measuring error in weighted data?
 Just weighted # of misclassified points

AdaBoost: Formula for computing coefficient \hat{w}_t of classifier $f_t(x)$

$$\hat{\mathbf{w}}_{t} = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_{t})}{weighted_error(f_{t})} \right)$$

AdaBoost: learning ensemble

• Start with same weight for all points: $\alpha_i = 1/N$

• For t = 1,...,T
– Learn
$$f_t(\mathbf{x})$$
 with data weights α_i
– Compute coefficient \hat{w}_t
– Recompute weights α_i

• Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

CS229: Machine Learning

©2022 Carlos Guestrin

Recompute weights α_i

©2022 Carlos Guestrin

AdaBoost: Updating weights α_i based on where classifier $f_t(x)$ makes mistakes

AdaBoost: Formula for updating weights α_i

$$\alpha_{i} \leftarrow \begin{bmatrix} \alpha_{i} e^{-\hat{W}_{t}}, & \text{if } f_{t}(x_{i}) = y_{i} \\ \alpha_{i} e^{\hat{W}_{t}}, & \text{if } f_{t}(x_{i}) \neq y_{i} \end{bmatrix}$$

AdaBoost: learning ensemble

• Start with same weight for all points: $\alpha_i = 1/N$

©2022 Carlos Guestrin

AdaBoost: Normalizing weights α_i

©2022 Carlos Guestrin

AdaBoost: learning ensemble

AdaBoost example: A visualization

©2022 Carlos Guestrin

t=1: Just learn a classifier on original data

Updating weights α_i

t=2: Learn classifier on weighted data

²⁰²² Carlos Gu€

Ensemble becomes weighted sum of learned classifiers

Decision boundary of ensemble classifier after 30 iterations

Boosting convergence & overfitting

©2022 Carlos Guestrin

Boosting question revisited

After some iterations, training error of boosting goes to zero!!!

©2022 Carlos Guestrin

AdaBoost Theorem

Condition of AdaBoost Theorem

©2022 Carlos Guestrin

Training error of final classifier is bounded by:

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}[F(x_i)\neq y_i] \le \frac{1}{N}\sum_{i=1}^{N}\exp(-y_i\text{score}(x_i))$$

Where
$$\operatorname{score}(x) = \sum_{t} \hat{w}_t f_t(x); F(x) = \operatorname{sign}(\operatorname{score}(x))$$

Training error of final classifier is bounded by: $\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[F(x_i) \neq y_i] \leq \frac{1}{N} \sum_{i=1}^{N} \exp(-y_i \operatorname{score}(x_i)) = \prod_{t=1}^{T} Z_t$ Where $\operatorname{score}(x) = \sum_t \hat{w}_t f_t(x); F(x) = \operatorname{sign}(\operatorname{score}(x))$

If we minimize $\prod_{t=1}^{T} Z_t$, we minimize our training error

We can tighten this bound greedily by choosing \hat{w}_t , f_t on each iteration to minimize:

$$Z_t = \sum_{i=1}^N \boldsymbol{\alpha}_{i,t} \exp(-\hat{w}_t y_i f_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\hat{w}_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

If each classifier is (at least slightly) better than random $weighted_error(f_t)$ = $\epsilon_t < 0.5$

AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{N}\sum_{i=1}^{N} \mathbb{I}[F(x_i) \neq y_i] \le \prod_{t=1}^{T} Z_t \le \exp\left(-2\sum_{t=1}^{T} (1/2 - \epsilon_t)^2\right)$$

Boosted decision stumps on loan data

Boosting tends to be robust to overfitting

But boosting will eventually overfit, so must choose max number of components T

Summary of boosting

©2022 Carlos Guestrir

Variants of boosting and related algorithms

There are hundreds of variants of boosting, most important:

Gradient
boosting
Great implementations available (e.g., XGBoost)

Many other approaches to learn ensembles, most important:

Bagging: Pick random subsets of the data

Learn a tree in each subset
Average predictions

Simpler than boosting & easier to parallelize
Typically higher error than boosting for same # of trees

(# iterations T)

56

Impact of boosting (spoiler alert... HUGE IMPACT)

Amongst most useful ML methods ever created

Extremely useful in computer vision

Used by most winners of ML competitions (Kaggle, KDD Cup,...)

Most deployed ML systems use model ensembles

• Standard approach for face detection, for example

• Malware classification, credit fraud detection, ads click through rate estimation, sales forecasting, ranking webpages for search, Higgs boson detection,...

• Coefficients chosen manually, with boosting, with bagging, or others

©2022 Carlos Guestrin

What you can do now...

- Identify notion ensemble classifiers
- Formalize ensembles as weighted combination of simpler classifiers
- Outline the boosting framework sequentially learn classifiers on weighted data
- Describe the AdaBoost algorithm
 - Learn each classifier on weighted data
 - Compute coefficient of classifier
 - Recompute data weights
 - Normalize weights
- Implement AdaBoost to create an ensemble of decision stumps