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Simple (weak) classifiers are good!

©2022 Carlos Guestrin

Logistic regression 
w. simple features

Low variance.  Learning is fast!

But high bias…

Shallow 
decision trees

Decision
stumps

Income>$100K?

Safe Risky

NoYes
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Finding a classifier that’s just right
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Model complexity
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train error

true error

Weak learner Need stronger learner

Option 1:  add more features or depth
Option 2: ?????



CS229: Machine Learning4

Boosting question

“Can a set of weak learners be combined to 
create a stronger learner?” Kearns and Valiant (1988)

Yes! Schapire (1990)

Boosting

Amazing impact:  � simple approach  � widely used in 
industry  � wins most Kaggle competitions � great systems 

(e.g., XGBoost)

©2022 Carlos Guestrin
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Ensemble classifier
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A single classifier

Output: ŷ = f(x)
- Either +1 or -1

©2022 Carlos Guestrin

Input: x

Classifier

Income>$100K?

Safe Risky

NoYes
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Ensemble methods: Each classifier “votes” on prediction
xi = (Income=$120K, Credit=Bad, Savings=$50K, Market=Good)  

f1(xi) = +1

Combine?

F(xi) = sign(w1 f1(xi) + w2 f2(xi) + w3 f3(xi) + w4 f4(xi))

Ensemble 
model Learn coefficients

Income>$100K?

Safe Risky

NoYes

Credit history?

Risky Safe

GoodBad

Savings>$100K?

Safe Risky

NoYes

Market conditions?

Risky Safe

GoodBad

Income>$100K?

Safe Risky

NoYes

f2(xi) = -1

Credit history?

Risky Safe

GoodBad

f3(xi) = -1

Savings>$100K?

Safe Risky

NoYes

f4(xi) = +1

Market conditions?

Risky Safe

GoodBad
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Ensemble classifier in general
• Goal: 
- Predict output y  
• Either +1 or -1

- From input x

• Learn ensemble model:
-Classifiers: f1(x),f2(x),…,fT(x)

-Coefficients: ŵ1,ŵ2,…,ŵT

• Prediction:

©2022 Carlos Guestrin

ŷ = sign

 
TX

t=1

ŵtft(x)

!
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Boosting
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Training a classifier

©2022 Carlos Guestrin

Training 
data

Learn 
classifier

Predict
ŷ = sign(f(x))

f(x)
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Learning decision stump
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Credit Income y

A $130K Safe

B $80K Risky

C $110K Risky

A $110K Safe

A $90K Safe

B $120K Safe

C $30K Risky

C $60K Risky

B $95K Safe

A $60K Safe

A $98K Safe

Credit Income y

A $130K Safe

B $80K Risky

C $110K Risky

A $110K Safe

A $90K Safe

B $120K Safe

C $30K Risky

C $60K Risky

B $95K Safe

A $60K Safe

A $98K Safe

Income?

> $100K ≤ $100K

ŷ = Safeŷ = Safe

3 1 4 3
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Boosting = Focus learning on “hard” points
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Training 
data

Learn 
classifier

Predict
ŷ = sign(f(x))

f(x)

Learn where f(x)
makes mistakes

Evaluate

Boosting: focus next 
classifier on places 

where f(x) does less well 
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Learning on weighted data:
More weight on “hard” or more important points

• Weighted dataset:
- Each xi,yi weighted by αi
• More important point = higher weight αi

• Learning:
-Data point i counts as αi data points
• E.g., αi = 2 è count point twice 

©2022 Carlos Guestrin



CS229: Machine Learning16

Credit Income y

A $130K Safe

B $80K Risky

C $110K Risky

A $110K Safe

A $90K Safe

B $120K Safe

C $30K Risky

C $60K Risky

B $95K Safe

A $60K Safe

A $98K Safe

Learning a decision stump on weighted data

©2022 Carlos Guestrin

Credi
t

Income y Weight 
α

A $130K Safe 0.5

B $80K Risky 1.5

C $110K Risky 1.2

A $110K Safe 0.8

A $90K Safe 0.6

B $120K Safe 0.7

C $30K Risky 3

C $60K Risky 2

B $95K Safe 0.8

A $60K Safe 0.7

A $98K Safe 0.9

Income?

> $100K ≤ $100K

ŷ = Riskyŷ = Safe

2 1.2 3 6.5

Increase weight α of harder/misclassified points 
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Boosting = Greedy learning ensembles from data

©2022 Carlos Guestrin

Training data

Predict  ŷ = sign(f1(x))

Learn classifier
f1(x)

Weighted data

Learn classifier & coefficient
ŵ,f2(x)

Predict  ŷ = sign(ŵ1 f1(x) + ŵ2 f2(x))

Higher weight 
for points where 
f1(x) is wrong 
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AdaBoost algorithm
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AdaBoost: learning ensemble 
[Freund & Schapire 1999] 

• Start with same weight for all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x) with data weights αi
-Compute coefficient ŵt

- Recompute weights αi

• Final model predicts by:

©2022 Carlos Guestrin

ŷ = sign

 
TX

t=1

ŵtft(x)

!
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Computing coefficient ŵt
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AdaBoost: Computing coefficient ŵt of classifier ft(x)

• ft(x) is good è ft has low training error

• Measuring error in weighted data?
- Just weighted # of misclassified points

©2022 Carlos Guestrin

Is ft(x) good?
ŵt largeYes

ŵt smallNo
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AdaBoost: 
Formula for computing coefficient ŵt of classifier ft(x)
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ŵt =
1

2
ln

✓
1� weighted error(ft)

weighted error(ft)

◆

weighted_error(ft)
on training data ŵt

Is ft(x) good?
Yes

No

1� weighted error(ft)

weighted error(ft)
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AdaBoost: learning ensemble 

• Start with same weight for all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x) with data weights αi
-Compute coefficient ŵt

- Recompute weights αi

• Final model predicts by:

©2022 Carlos Guestrin

ŷ = sign

 
TX

t=1

ŵtft(x)

!

ŵt =
1

2
ln

✓
1� weighted error(ft)

weighted error(ft)

◆
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Recompute weights αi
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AdaBoost: Updating weights αi based on 
where classifier ft(x) makes mistakes 

©2022 Carlos Guestrin

Did ft get xi right?

Decrease αiYes

Increase αi
No
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AdaBoost: Formula for updating weights αi
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ft(xi)=yi ? ŵt Multiply αi by Implication

Did ft get xi right?
Yes

No

αi ç

αi e    ,  if ft(xi)=yi

-ŵt

αi e   ,   if ft(xi)≠yi
ŵt
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AdaBoost: learning ensemble 

• Start with same weight for all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x) with data weights αi
-Compute coefficient ŵt

- Recompute weights αi

• Final model predicts by:
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ŷ = sign

 
TX

t=1

ŵtft(x)

!

ŵt =
1

2
ln

✓
1� weighted error(ft)

weighted error(ft)

◆

αi ç

αi e    ,  if ft(xi)=yi

-ŵt

αi e   ,   if ft(xi)≠yi

ŵt
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AdaBoost: Normalizing weights αi
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If xi often mistake, 
weight αi gets very 

large

If xi often correct, 
weight αi gets very 

small

Can cause numerical instability 
after many iterations

Normalize weights to 
add up to 1 after every iteration

↵i 
↵iPN
j=1 ↵j

.
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AdaBoost: learning ensemble 

• Start with same weight for 
all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x) with data weights αi

- Compute coefficient ŵt

- Recompute weights αi

- Normalize weights αi

• Final model predicts by:
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ŷ = sign

 
TX

t=1

ŵtft(x)

!

ŵt =
1

2
ln

✓
1� weighted error(ft)

weighted error(ft)

◆

αi ç

αi e    ,  if ft(xi)=yi

-ŵt

αi e   ,   if ft(xi)≠yi

ŵt

↵i 
↵iPN
j=1 ↵j

.
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AdaBoost example:
A visualization
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t=1: Just learn a classifier on original data

©2022 Carlos Guestrin

Learned decision stump f1(x)Original data
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Updating weights αi

©2022 Carlos Guestrin

Learned decision stump f1(x) New data weights αi
Boundary

Increase weight αi
of misclassified points
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t=2: Learn classifier on weighted data

©2022 Carlos Guestrin

Learned decision stump f2(x)
on weighted data

Weighted data: using αi
chosen in previous iteration

f1(x)
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Ensemble becomes weighted sum of learned 
classifiers

©2022 Carlos Guestrin

=
f1(x) f2(x)

0.61

ŵ1

+ 0.53

ŵ2
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Decision boundary of ensemble classifier 
after 30 iterations

©2022 Carlos Guestrin

training_error = 0
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Boosting convergence & overfitting
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Boosting question revisited

“Can a set of weak learners be combined to 
create a stronger learner?” Kearns and Valiant (1988)

Yes! Schapire (1990)

Boosting

©2022 Carlos Guestrin
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After some iterations, 
training error of boosting goes to zero!!!
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Iterations of boosting

Boosted 
decision 
stumps on 
toy dataset

Training error of ensemble of 
30 decision stumps = 0%

Training error of 
1 decision stump = 22.5%
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AdaBoost Theorem

Under some technical conditions… 

Training error of 
boosted classifier → 0 

as T→∞
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Iterations of boosting

May oscillate a bit

But will 
generally decrease, & 
eventually become 0!
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Condition of AdaBoost Theorem

Under some technical conditions… 

Training error of 
boosted classifier → 0 

as T→∞

©2022 Carlos Guestrin

Extreme example:
No classifier can 

separate a +1 
on top of -1

Condition = At every t, 
can find a weak learner with 

weighted_error(ft) < 0.5

Not always 
possible

Nonetheless, boosting often 
yields great training error 
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AdaBoost Theorem more formally
Training error of final classifier is bounded by:

Where
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1

N

NX

i=1

I[F (xi) 6= yi] 
1

N

NX

i=1

exp(�yiscore(xi))

score(x) =
X

t

ŵtft(x); F (x) = sign(score(x))



CS229: Machine Learning48

AdaBoost Theorem more formally
Training error of final classifier is bounded by:

Where
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=
TY

t=1

Zt
1

N

NX

i=1

I[F (xi) 6= yi] 
1

N

NX

i=1

exp(�yiscore(xi))

score(x) =
X

t

ŵtft(x); F (x) = sign(score(x))
↵i 

↵iPN
j=1 ↵j

.

Zt =
NX

i=1

Dt(i) exp(�ŵtyift(xi))↵i 
↵iPN
j=1 ↵j

.

,t
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AdaBoost Theorem more formally

If we minimize , we minimize our training error

We can tighten this bound greedily by choosing ŵt, ft on each 
iteration to minimize:

For boolean target function, this is accomplished by [Freund & Schapire ‘97]:

©2022 Carlos Guestrin

=
TY

t=1

Zt

ŵt =
1

2
ln

✓
1� ✏t
✏t

◆

Zt =
NX

i=1

Dt(i) exp(�ŵtyift(xi))
↵i 

↵iPN
j=1 ↵j

.

,t
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AdaBoost Theorem more formally

If each classifier is (at least slightly) better than random

AdaBoost will achieve zero training error (exponentially fast):

©2022 Carlos Guestrin

✏t < 0.5

1

N

NX

i=1

I[F (xi) 6= yi] 
TY

t=1

Zt  exp

 
�2

TX

t=1

(1/2� ✏t)
2

!

ŵt =
1

2
ln

✓
1� weighted error(ft)

weighted error(ft)

◆

=
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Boosted decision stumps on loan data

Decision trees on loan data
39% test error

8% training error

Overfitting

32% test error

28.5% training error

Better fit & lower test error
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Boosting tends to be robust to overfitting
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Test set performance about 
constant for many iterations 
è Less sensitive to choice of T
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But boosting will eventually overfit, 
so must choose max number of components T

©2022 Carlos Guestrin

Best test error around 31%

Test error eventually 
increases to 33% (overfits)
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Summary of boosting
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Variants of boosting and related algorithms
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There are hundreds of variants of boosting, most important:

Many other approaches to learn ensembles, most important:

• Like AdaBoost, but useful beyond basic classification
• Great implementations available (e.g., XGBoost)

Gradient 
boosting

• Bagging: Pick random subsets of the data
- Learn a tree in each subset
- Average predictions

• Simpler than boosting & easier to parallelize 
• Typically higher error than boosting for same # of trees 

(# iterations T)

Random 
forests
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Impact of boosting (spoiler alert... HUGE IMPACT)

• Standard approach for face detection, for example
Extremely useful in 

computer vision

• Malware classification, credit fraud detection, ads 
click through rate estimation, sales forecasting, 
ranking webpages for search, Higgs boson 
detection,…

Used by most winners of 
ML competitions 

(Kaggle, KDD Cup,…) 

• Coefficients chosen manually, with boosting, with 
bagging, or others

Most deployed ML systems use 
model ensembles

©2022 Carlos Guestrin

Amongst most useful ML methods ever created
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What you can do now…

• Identify notion ensemble classifiers
• Formalize ensembles as weighted combination of simpler classifiers
• Outline the boosting framework –

sequentially learn classifiers on weighted data
• Describe the AdaBoost algorithm
- Learn each classifier on weighted data
- Compute coefficient of classifier
- Recompute data weights
- Normalize weights

• Implement AdaBoost to create an ensemble of decision stumps

©2022 Carlos Guestrin


