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Fit datawitha lineor ... ?

yA

price ($)

square feet (sq.ft.)

©2022 Carlos Guestrin

Dude, it's
not a linear

relationship!
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What about a quadratic function?
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Even higher order polynomial
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Do you believe this fit?
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iIsn't worth
so little
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Do you believe this fit?
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‘Remember that all models are wrong; the

practical question is how wrong do they have
to be to not be useful.” George Box, 1987.
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Assessing the loss




Assessing the loss
Part 1: Training error
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Define training data
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Define training data
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Example:
Fit quadratic to minimize RSS
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Example:
Use squared error loss (y-f; (x))?
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Training error (W) = 1/N *
[(Strain 1-Fi(SA- ftorain )2
+ (Strain Z_fv“v(sq-ft-train 2))2

+ (Strain 3‘fw(5q-ft-train 3))2
+ ... Include all

X training houses]
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Training error vs. model complexity
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Is training error a good measure of predictive
performance?

Issue:
Training error is overly optimistic...w was fit to training data
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Small training error = good predictions
(unless training data includes
everything you might ever see)
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Assessing the loss
Part 2: Generalization (true) error
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Generalization error

Really want estimate of loss over all possifie (

Lots of houses
in neighborhood,
but not in dataset
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,S) pairs
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Generalization error definition

Really want estimate of loss over all possiite (  ,5) pairs

average over all possible
(x,y) pairs weighted by

Formally: how likely each is

|

generalization error = Exly[L(y,fw(x))]

fit using training data
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Generalization error vs. model complexity
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True error vs. model complexity

A

Error

ya y[ Model complexity
J‘u : v

X ©2022 Carlos Guestrin

>

CS229: Machn; ;earning



Assessing the loss
Part 3: Test error
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Training, true, test error vs. model complexity

A Overfitting if:

Error
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3 sources of error +

the bias-variance tradeoff
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3 sources of error

In forming predictions, there are 3 sources of error:

1. Noise
2. Bias
3.
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Data inherently noisy
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Bias contribution

Suppose we fit a constant function
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Bias contribution

Over all possible size N training sets,

what do | expect my fit to be?
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Bias contribution

, |s our approach flexible
B|aS(X) = fw(true)(x) - fW(X) <€— enough to capture fytrue)?
If not, error in predictions.

[ fw(true)

low complexity
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\Variance contribution

How much do specific fits vary from the expected fit?
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\Variance contribution

How much do specific fits vary from the expected fit?
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\Variance contribution

How much do specific fits vary from the expected fit?

Can specific fits vary widely?
If so, erratic predictions
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Variance of high-complexity models

Assume we fit a high-order polynomial

2

fv“v(trainZ)

> >
square feet (sq.ft. X square feet (sq.ft.) X

©2022 Carlos Guestrin CS229: Machine Learning



Variance of high-complexity models

Suppose we fit a high-order polynomial
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Variance of high-complexity models

high complexity
9
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Bias of high-complexity models

high complexity
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Sum of 3 sources of error

Average squared error at X
= 02 + [bias(fy(x))]2 + var(fy(x,)
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Bilas-variance tradeoff

A

VE 5 Model complexity
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Error
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Error vs. amount of data

A

# data points in training set
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Why 3 sources of error?

A formal derivation
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Deriving expected
prediction error

Expected prediction error
= Ei..in [g€Neralization error of w(train)]

= Etrain [Exly[l—(yrfv“v(train)(x))]]

1. Look at specific x;
2. Consider L(y,f;(x)) = (y-fs(x))?

Expected prediction error at x;
= Evcainy, LV Fontrain (%)
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Simplifying Notation

» Expected prediction error at x;

= Etrainy, [(yt fittrain (Xe) ]
* Simple (and abusive ©) notation:
“Yir Y
- 1:W(true)(xt) — f
- 1:\/“v(train)(xt) — f

- Etrain[fv“v(train)(xt)] — fw(xt) — f
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Deriving expected
prediction error

Expected prediction error at X,

= Exvainy, [Ye~Fatram )2 = Evanlty—112] =

= Etrain[(y_f) T (f_f))Z]
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Equating MSE with
bias and variance

MSE [fv“v(train) (Xt)]

= Etrain !

= Etrain !
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Putting it all together

Expected prediction error at x;
= 02 + MSE[f, (x,]

= 02 + [bias(f,,(x))]2 + var(f(x,)

N

5 sources of error
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Summary of

bias-variance tradeoff




What you can do now...

« Contrast relationship between model complexity and
train, true and test loss

« Compute training and test error given a loss function for
different model complexities

« List and interpret the 3 sources of avg. prediction error
- lrreducible error, bias, and variance
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