

Bias-Variance Tradeoff

CS229: Machine Learning Carlos Guestrin Stanford University Slides include content developed by and co-developed with Emily Fox

achine Learning

Fit data with a line or ... ?

What about a quadratic function?

Even higher order polynomial

Do you believe this fit?

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George Box, 1987.

©2022 Carlos Guestrin

Assessing the loss

©2022 Carlos Guestrir

Assessing the loss Part 1: Training error

©2022 Carlos Guestrin

Define training data

Define training data

Example: Fit quadratic to minimize RSS

CS229: Machine Learning

Example: Use squared error loss $(y-f_{\hat{w}}(x))^2$

CS229: Machine Learning

Training error vs. model complexity

Is training error a good measure of predictive performance?

Issue:

Training error is overly optimistic...ŵ was fit to training data

Assessing the loss Part 2: Generalization (true) error

©2022 Carlos Guestrin

Generalization error

Really want estimate of loss over all possime (, ,) pairs

Generalization error vs. model complexity

True error vs. model complexity

21

Assessing the loss Part 3: Test error

©2022 Carlos Guestrin

Training, true, test error vs. model complexity

3 sources of error + the bias-variance tradeoff

3 sources of error

In forming predictions, there are 3 sources of error:

- 1. Noise
- 2. Bias
- 3. Variance

Data inherently noisy

Bias contribution

Suppose we fit a constant function

Bias contribution

Over all possible size N training sets, what do I expect my fit to be?

Bias contribution $Bias(\mathbf{x}) = f_{w(true)}(\mathbf{x}) - f_{\bar{\mathbf{w}}}(\mathbf{x}) \longleftarrow \text{ Is our approach flexible enough to capture } f_{w(true)}?$ If not, error in predictions. y4 w(true) low complexity price (\$) square feet (sq.ft.)

CS229: Machine Learning

©2022 Carlos Guestrin

29

Variance contribution

How much do specific fits vary from the expected fit?

Variance contribution

How much do specific fits vary from the expected fit?

Variance contribution

32

How much do specific fits vary from the expected fit?

Variance of high-complexity models

Assume we fit a high-order polynomial

Variance of high-complexity models

Suppose we fit a high-order polynomial

CS229: Machine Learning

Variance of high-complexity models

©2022 Carlos Guestrin

Bias of high-complexity models

Sum of 3 sources of error

Average squared error at \mathbf{x}_t = σ^2 + [bias(f_{$\hat{\mathbf{w}}$}(\mathbf{x}_t))]² + var(f_{$\hat{\mathbf{w}}$}(\mathbf{x}_t))

data points in training set

39

©2022 Carlos Guestrin

Why 3 sources of error? A formal derivation

©2022 Carlos Guestrin

Deriving expected prediction error

Expected prediction error = E_{train} [generalization error of $\hat{w}(train)$]

 $= E_{train} \left[E_{\mathbf{x},\mathbf{y}} \left[L(\mathbf{y}, f_{\hat{\mathbf{w}}(train)}(\mathbf{x})) \right] \right]$

1. Look at specific \mathbf{x}_{t}

2. Consider
$$L(y, f_{\hat{w}}(\mathbf{x})) = (y - f_{\hat{w}}(\mathbf{x}))^2$$

Expected prediction error at \mathbf{x}_{t} $= E_{\text{train}, v_t} \left[(y_t - f_{\hat{w}(\text{train})}(\mathbf{x}_t))^2 \right]$

Simplifying Notation

• Expected prediction error at \mathbf{x}_{t}

$$= E_{\text{train}, y_t} \left[(y_t - f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_t))^2 \right]$$

• Simple (and abusive 🙂) notation:

$$\begin{array}{l} - y_{t} \rightarrow y \\ - f_{w(true)}(\mathbf{x}_{t}) \rightarrow f \\ - f_{\hat{w}(train)}(\mathbf{x}_{t}) \rightarrow \hat{f} \\ - E_{train} \left[f_{\hat{w}(train)}(\mathbf{x}_{t}) \right] = f_{\overline{w}}(\mathbf{x}_{t}) \rightarrow \bar{f} \end{array}$$

Deriving expected prediction error

Expected prediction error at \mathbf{x}_t

$$= E_{\text{train},y_t} \left[(y_t - f_{\hat{w}(\text{train})}(\mathbf{x}_t))^2 \right] = E_{\text{train}} \left[(y - \hat{f})^2 \right] = E_{\text{train}} \left[(y - f) + (f - \hat{f})^2 \right]$$

Equating MSE with bias and variance

 $MSE[f_{\hat{w}(\text{train})}(\mathbf{x}_{t})]$ = $E_{\text{train}}[(f - \hat{f})^{2}]$ = $E_{\text{train}}[((f - \bar{f}) + (\bar{f} - \hat{f}))^{2}]$

Putting it all together

Summary of bias-variance tradeoff

©2022 Carlos Guestrir

What you can do now...

- Contrast relationship between model complexity and train, true and test loss
- Compute training and test error given a loss function for different model complexities
- List and interpret the 3 sources of avg. prediction error
 - Irreducible error, bias, and variance