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Fit datawitha lineor ... ?

Dude, it's
not a linear
relationship!
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What about a quadratic function?
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Even higher order polynomial
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Do you believe this fit?
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Do you believe this fit?
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‘Remember that all models are wrong; the

practical question is how wrong do they have
to be to not be useful.” George Box, 1987.
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Assessing the loss




Assessing the loss
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Define training data
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Define training data
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Example:
Fit quadratic to minimize RSS
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Example:
Use squared error loss (y-f; (x))?
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Training error vs. model complexity
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Is training error a good measure of predictive
performance?

Issue:
Training error is overly optimistic...w was fit to training data
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Small training error = good predictions
(unless training data includes
everything you might ever see)
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Assessing the loss
Part 2: Generalization (true) error
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Generalization error

Really want estimate of loss over all possifie (

Lots of houses
in neighborhood,
but not in dataset
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Generalization error definition

Really want estimate of loss over all possiite (  ,5) pairs

average over all possible
(x,y) pairs weighted by

Formally: how likely each is

|

generalization error = Exly[L(y,fw(x))]

L Iy \&u Ing training data
P, plxuy)
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Generalization error vs. model complexity
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True error vs. model complexity
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Assessing the loss
Part 3: Test error
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Training, true, test error vs. model complexity
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3 sources of error +

the bias-variance tradeoff




25

3 sources of error

In forming predictions, there are 3 sources of error:
1. Noise
2. Bias & %\Jw W()/ Con  moct GNGL Aate A0 avy

3. Variance & k., Much Aplel
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Data inherently noisy
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Bias contribution

Suppose we fit a constant function
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Bias contribution

Over all possible size N training sets,
what do | expect my fit to be?

R & OV5 Lof
1:\/“v(trainZ)
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Bias contribution

, |s our approach flexible
B|aS(X) = fw(true)(x) - fW(X) <€— enough to capture fytrue)?
If not, error in predictions.
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\Variance contribution

How much do specific fits vary from the expected fit?
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\Variance contribution

How much do specific fits vary from the expected fit?
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\Variance contribution

How much do specific fits vary from the expected fit?

Can specific fits vary widely?
If so, erratic predictions
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Variance of high-complexity models

Assume we fit a high-order polynomial
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Variance of high-complexity models

Suppose we fit a high-order polynomial
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Variance of high-complexity models

high complexity
9
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Bias of high-complexity models

high complexity
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Sum of 3 sources of error

[Von  0/vor T
Average squared error at X

= 02 + [bias(f,,(x))]2 + var(f(x,)
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Bilas-variance tradeoff
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Error vs. amount of data™™” = ﬁi;%‘&x .
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Why 3 sources of error?

A formal derivation




Deriving expected
prediction error

Expected prediction error
= Ei..in [g€Neralization error of w(train)]

= Etrain [Exly[l—(yrfv“v(train)(x))]]

1. Look at specific x,
2. Consider L(y,f;(x)) = (y-fs(x))?

Expected prediction error at x;

= Etra%[<yt-fw<tram><xt>>2]
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Simplifying Notation

» Expected prediction error at x;

= Etram Yt [(yt f (train) (Xt)) ]
* Simple (and abusive ©) notation:
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Deriving expected ELasd —preny gt

prediction error

Expected prediction error at x;

= Etrain,yt[(yt_fv"v(train)(xt))z] — Etrain[(y_f)z] =
= Etrain[((y_f) + (f_f))Z]
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Equating MSE with
bias and variance
MSE [fv“v(train)(xt)]
= Etrain-(f - f)Z] b VOrﬂcQﬁm
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Putting it all together

Expected prediction error at x;
= 02 + MSE[f, (x,]

= 02 + [bias(f,,(x))]2 + var(f(x,)
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3 sources of error
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Summary of

bias-variance tradeoff




What you can do now...

« Contrast relationship between model complexity and
train, true and test loss

« Compute training and test error given a loss function for
different model complexities

« List and interpret the 3 sources of avg. prediction error
- lrreducible error, bias, and variance
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