

Bias-Variance Tradeoff

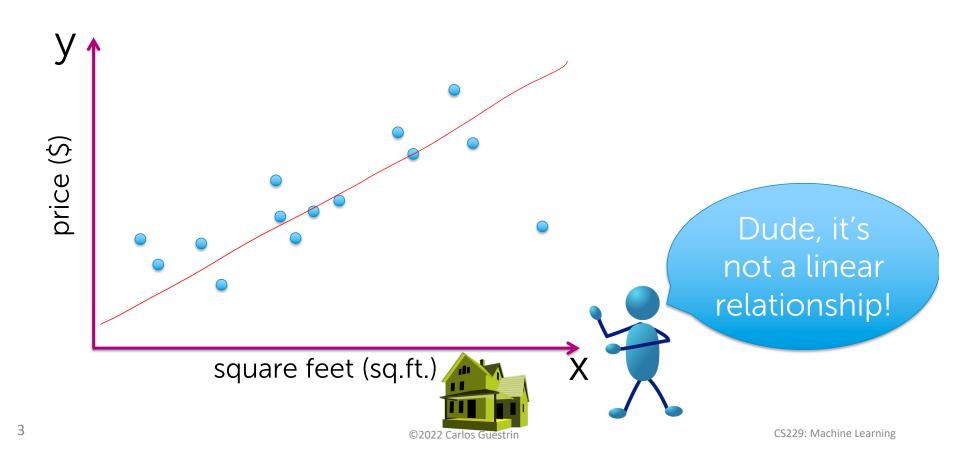
CS229: Machine Learning Carlos Guestrin Stanford University

Slides include content developed by and co-developed with Emily Fox

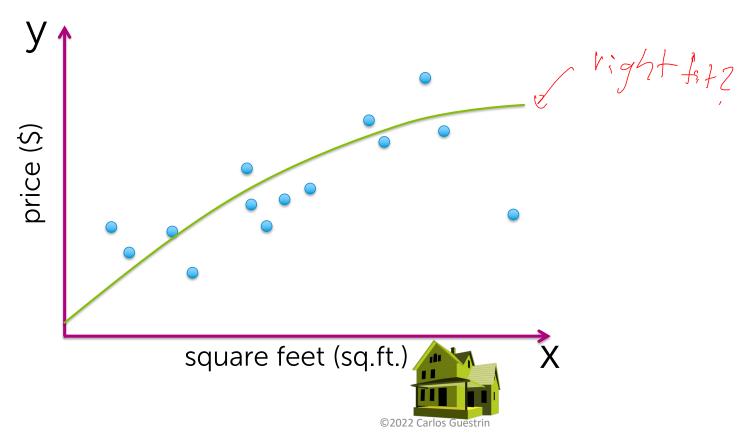
©2022 Carlos Guestrin

2

Fit data with a line or ...?

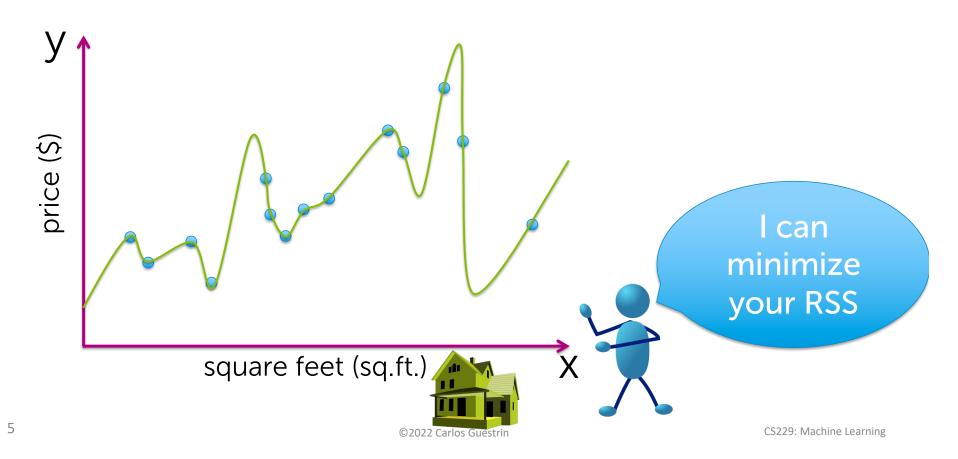


What about a quadratic function?

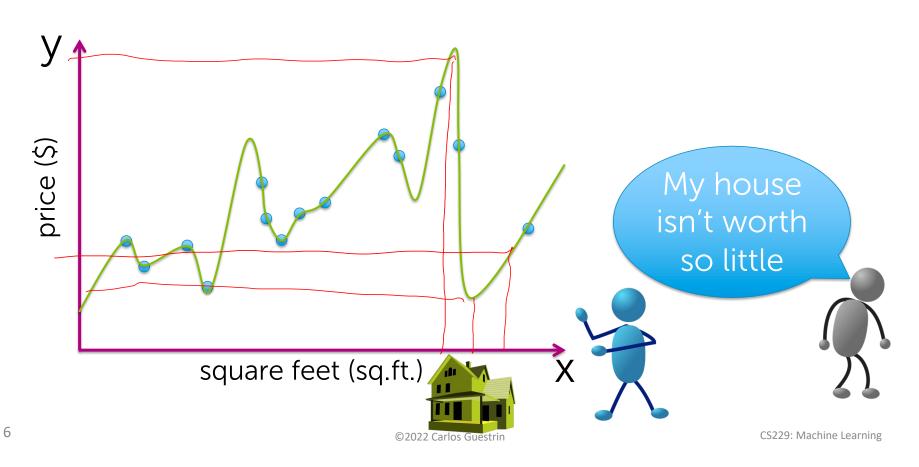


4

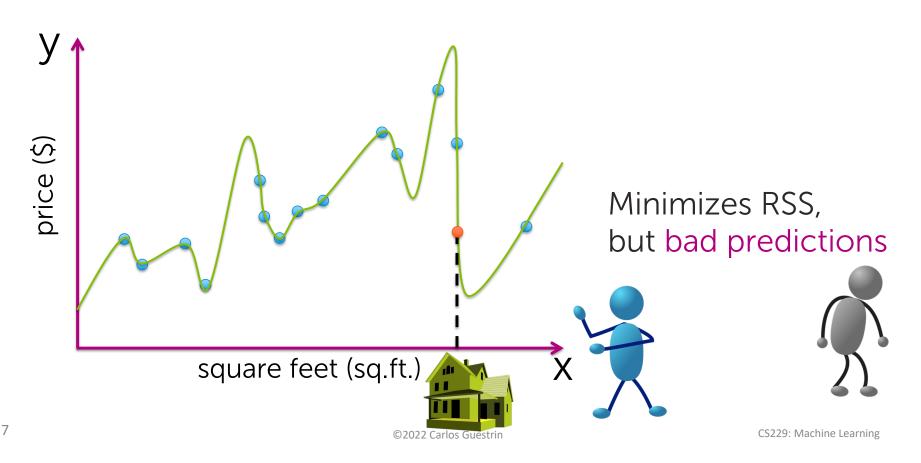
Even higher order polynomial



Do you believe this fit?

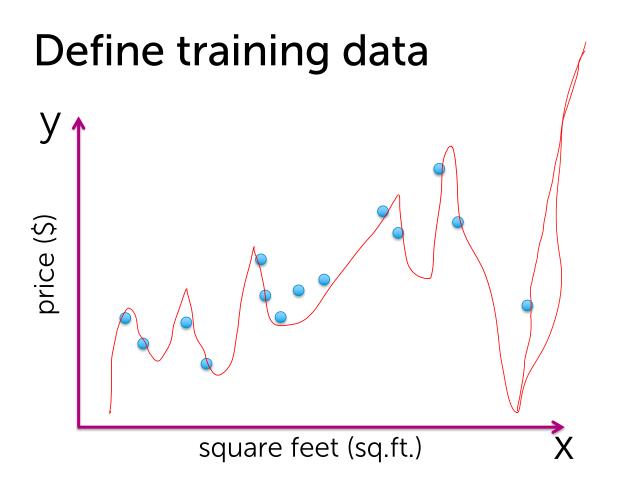


Do you believe this fit?

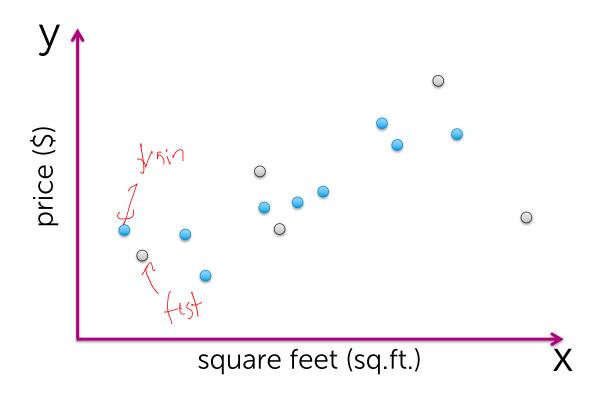


"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George Box, 1987.

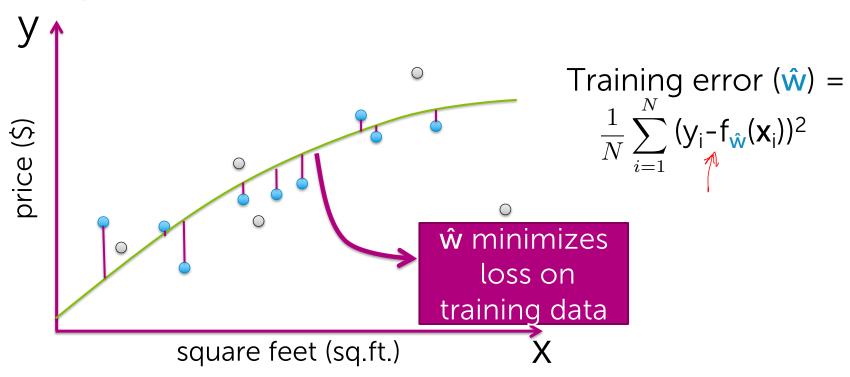
Assessing the loss Part 1: Training error



Define training data



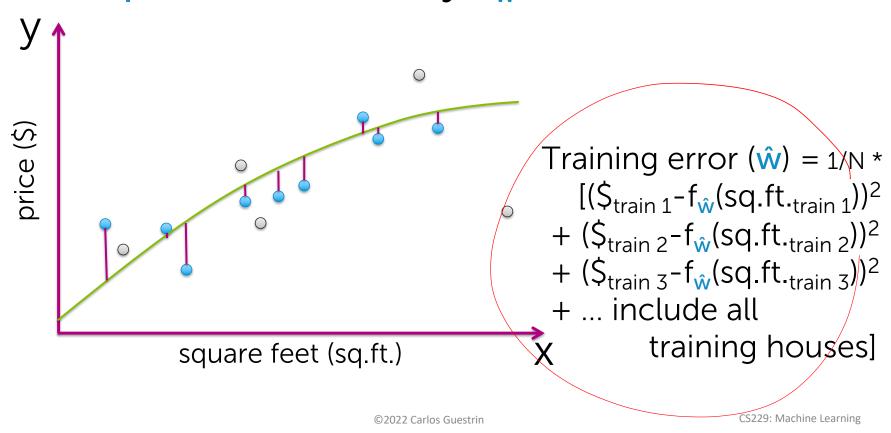
Example: Fit quadratic to minimize RSS



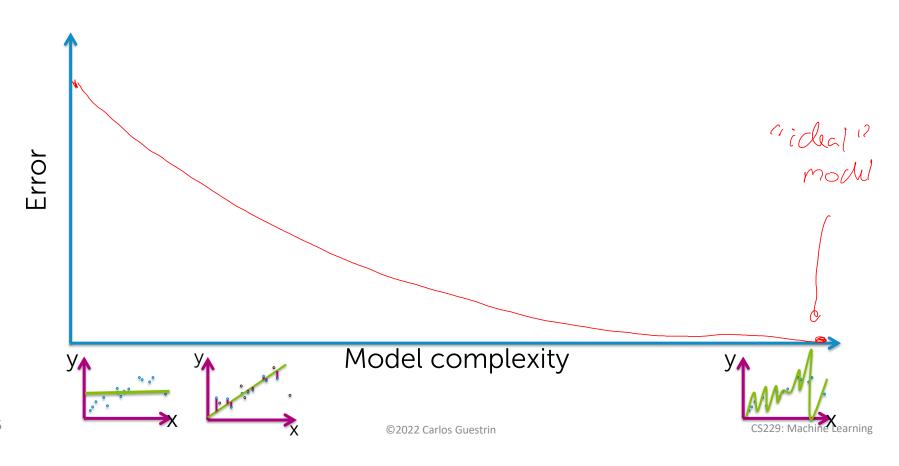
Example:

14

Use squared error loss $(y-f_{\hat{w}}(x))^2$



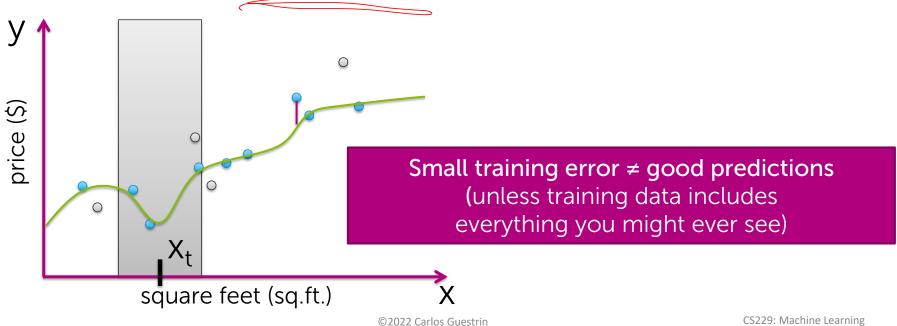
Training error vs. model complexity



Is training error a good measure of predictive performance?

Issue:

Training error is overly optimistic... www was fit to training data

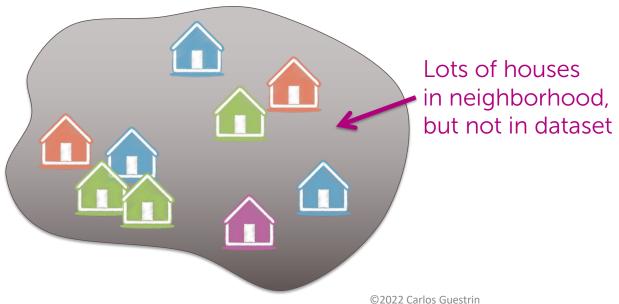


16

Assessing the loss Part 2: Generalization (true) error

Generalization error

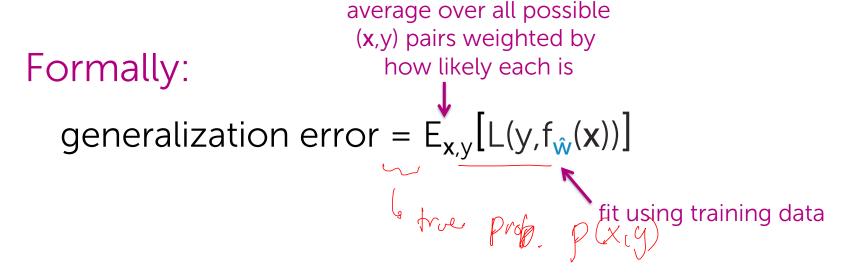
Really want estimate of loss over all possme (,\$) pairs



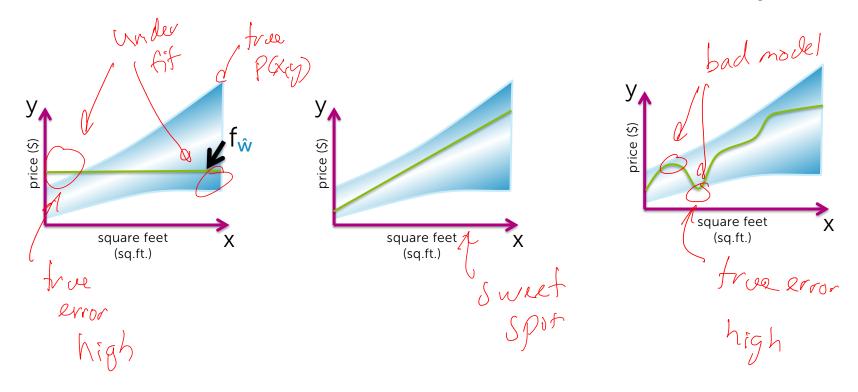
18

Generalization error definition

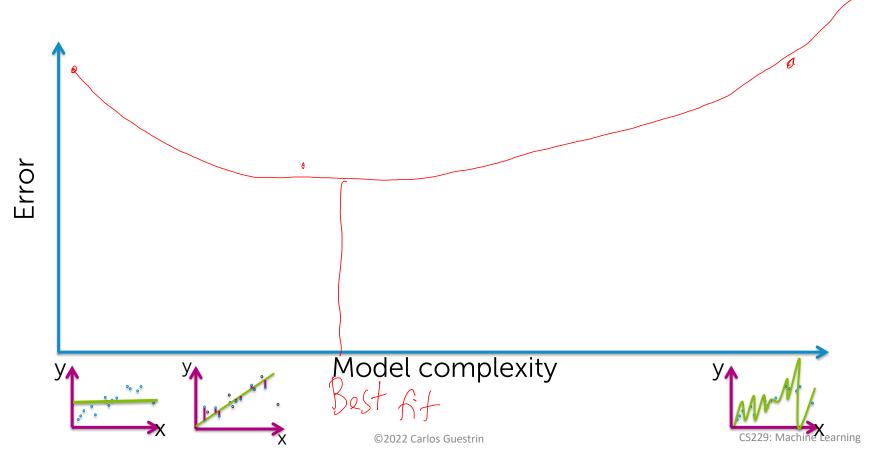
Really want estimate of loss over all possme (,\$) pairs



Generalization error vs. model complexity



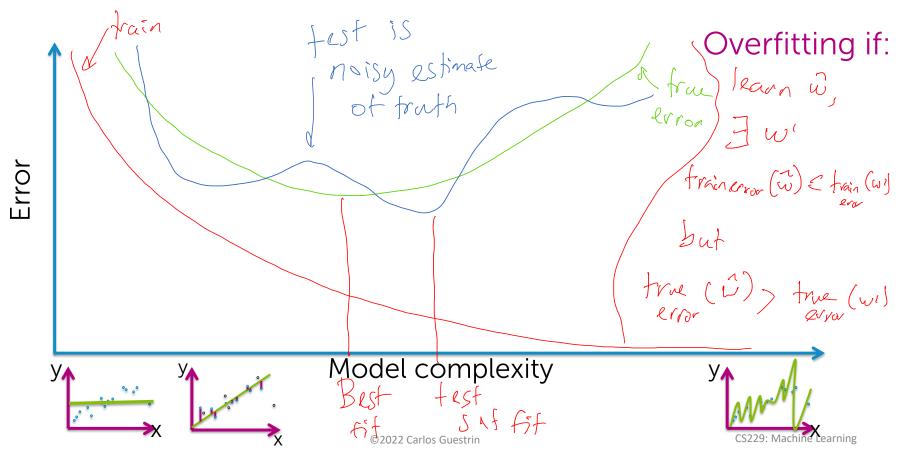
True error vs. model complexity



Assessing the loss Part 3: Test error

Comes from P(X, Y)

Training, true, test error vs. model complexity



3 sources of error + the bias-variance tradeoff

3 sources of error

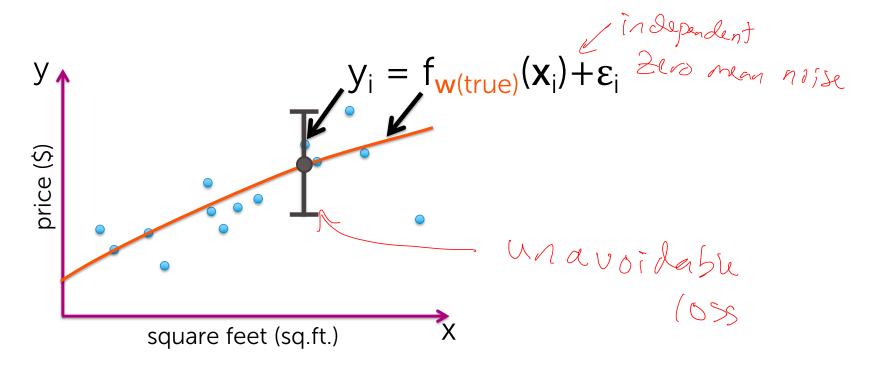
In forming predictions, there are 3 sources of error:

1. Noise

2. Bias et how well can model fit data on aug.

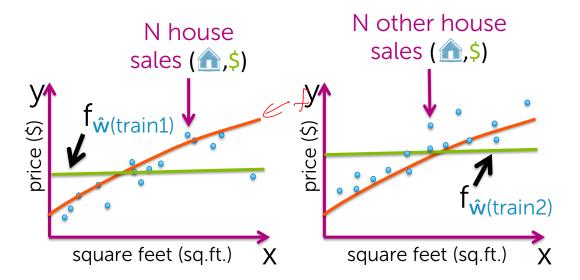
3. Variance & how much nodel would charge if

Data inherently noisy



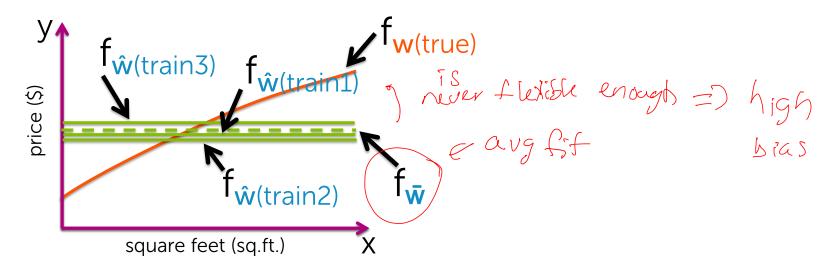
Bias contribution

Suppose we fit a constant function



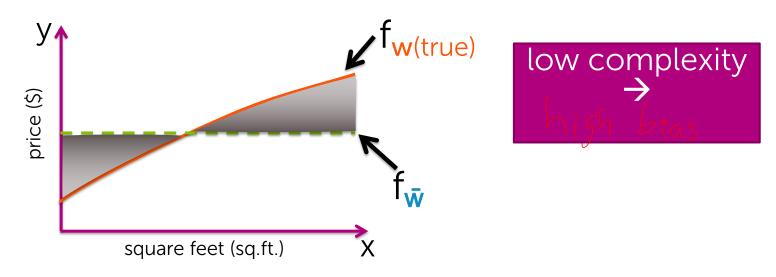
Bias contribution

Over all possible size N training sets, what do I expect my fit to be?



Bias contribution

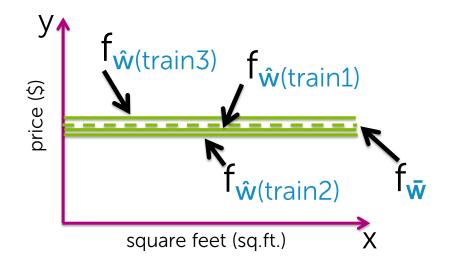
$$Bias(\mathbf{x}) = f_{\mathbf{w}(true)}(\mathbf{x}) - f_{\bar{\mathbf{w}}}(\mathbf{x}) \qquad \text{Is our approach flexible} \\ = \text{enough to capture } f_{\mathbf{w}(true)}? \\ \text{If not, error in predictions.}$$



29

Variance contribution

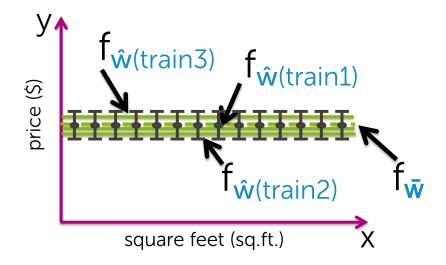
How much do specific fits vary from the expected fit?



30

Variance contribution

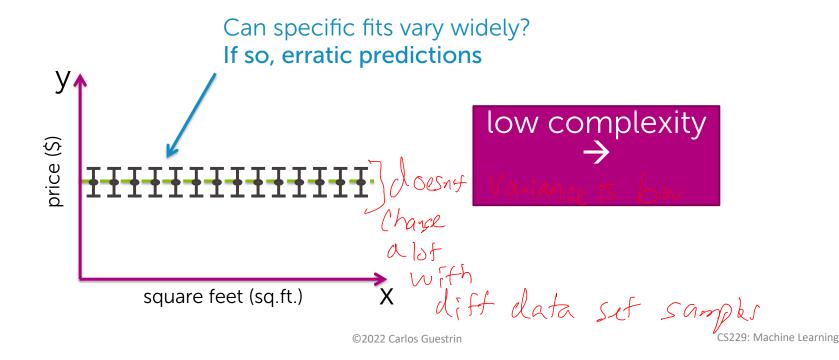
How much do specific fits vary from the expected fit?



Variance contribution

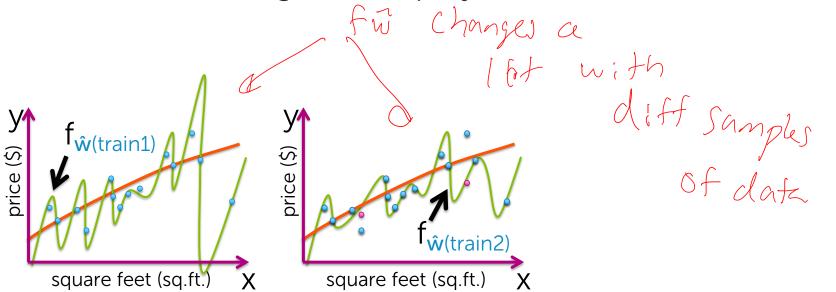
32

How much do specific fits vary from the expected fit?



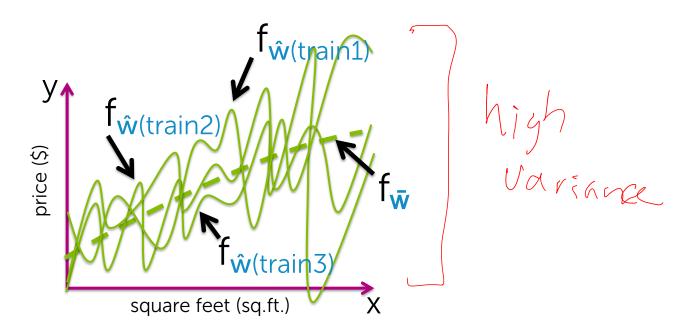
Variance of high-complexity models

Assume we fit a high-order polynomial



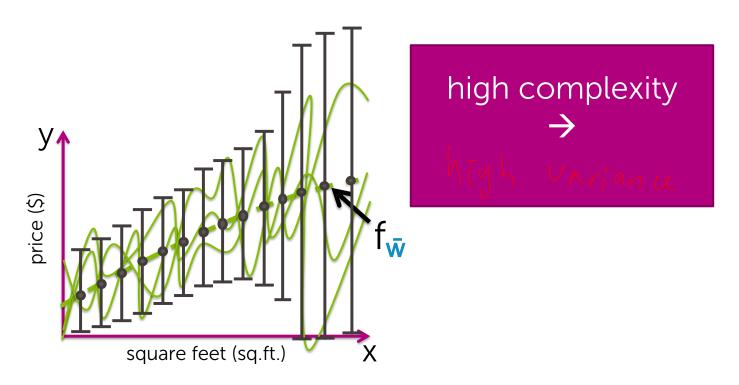
Variance of high-complexity models

Suppose we fit a high-order polynomial

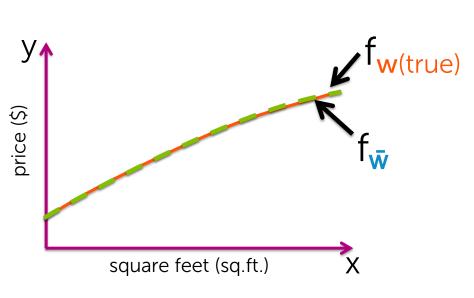


34

Variance of high-complexity models

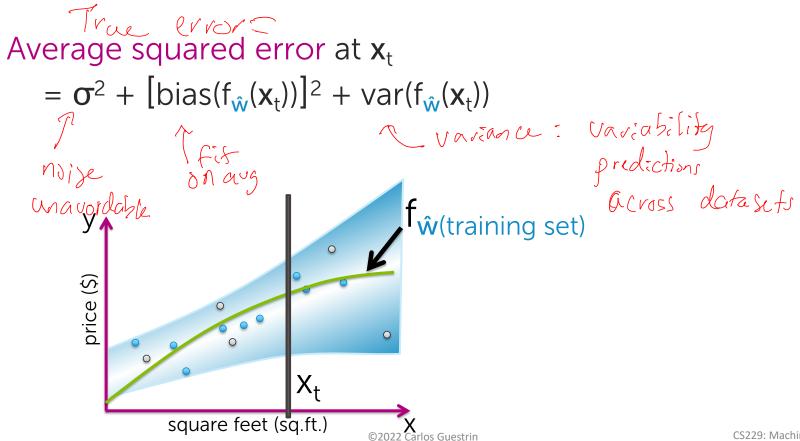


Bias of high-complexity models

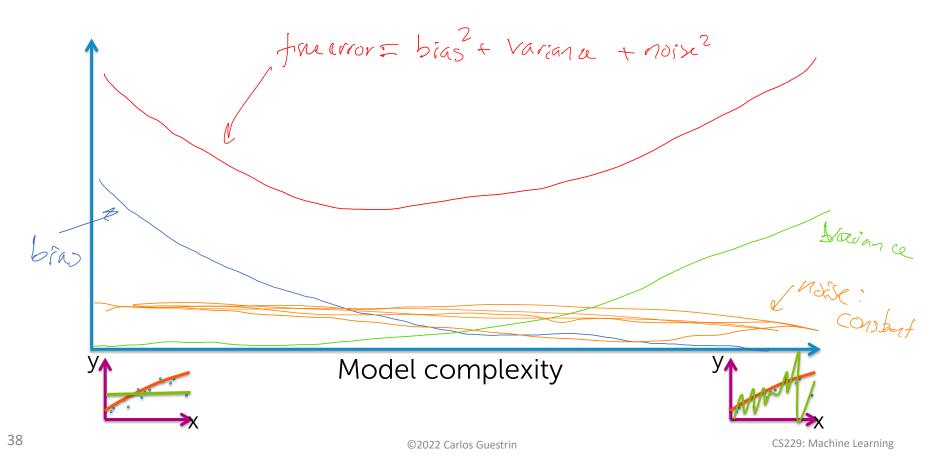


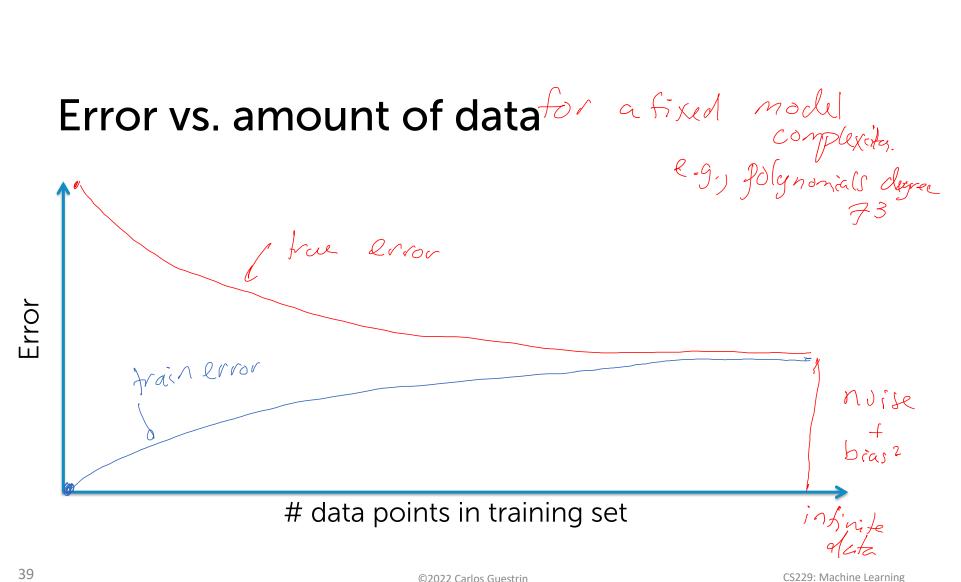
36 CS229: Machine Learning ©2022 Carlos Guestrin

Sum of 3 sources of error



Bias-variance tradeoff





Why 3 sources of error? A formal derivation

CS229: Machine L

Deriving expected prediction error

- Expected prediction error = E_{train} [generalization error of $\hat{\mathbf{w}}$ (train)]
 - $= E_{train} \left[E_{x,y} \left[L(y, f_{\hat{\mathbf{w}}(train)}(x)) \right] \right]$
- 1. Look at specific \mathbf{x}_t
- 2. Consider $L(y,f_{\hat{\mathbf{w}}}(\mathbf{x})) = (y-f_{\hat{\mathbf{w}}}(\mathbf{x}))^2$

Expected prediction error at \mathbf{x}_t

$$= E_{\text{train}} \left[(y_t - f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_t))^2 \right]$$

Simplifying Notation

Expected prediction error at x_t

$$= E_{train, y_t} \left[(y_t - f_{\hat{\mathbf{w}}(train)}(\mathbf{x}_t))^2 \right]$$

• Simple (and abusive ©) notation:

$$-y_t \rightarrow y$$

$$-f_{w(true)}(x_t) \rightarrow f \leftarrow f$$

$$-f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_{t}) \rightarrow \hat{f} \leftarrow [\text{larged}]$$

$$- E_{\text{train}} [f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_t)] = f_{\bar{\mathbf{w}}}(\mathbf{x}_t) \to f \text{ learned on any}.$$

Deriving expected prediction error

Expected prediction error at \mathbf{x}_t

=
$$E_{\text{train},y_t}[(y_t-f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_t))^2] = \underbrace{E_{\text{train}}[(y-\hat{\mathbf{f}})^2]} =$$

$$= E_{\text{train}} [(\mathbf{y} - \mathbf{f}) + (\mathbf{f} - \hat{\mathbf{f}}))^2]$$

Equating MSE with bias and variance

$$MSE[f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_{t})]$$

$$= E_{\text{train}}[(f - \hat{\mathbf{f}})^{2}]$$

$$= E_{\text{train}}[((f - \bar{\mathbf{f}}) + (\bar{\mathbf{f}} - \hat{\mathbf{f}}))^{2}]$$

$$= \mathcal{E}_{\text{train}}[((f - \bar{\mathbf{f}})^{2}) + 2\mathcal{E}_{\text{train}}[(f - \bar{\mathbf{f}})^{2}] + \mathcal{E}_{\text{train}}[(f - \bar{\mathbf{f}})^{2}]$$

$$= \mathcal{E}_{\text{train}}[(f - \bar{\mathbf{f}})^{2}] + 2\mathcal{E}_{\text{train}}[(f - \bar{\mathbf{f}})^{2}] + \mathcal{E}_{\text{train}}[(f - \bar{\mathbf{f}})^{2}]$$

$$= \mathcal{E}_{\text{train}}[(f - \bar{\mathbf{f}})^{2}] + \mathcal{E}_{\text{train}}[(f - \bar{\mathbf{f}})^{2}]$$

Putting it all together

Expected prediction error at \mathbf{x}_t

$$= \sigma^2 + MSE[f_{\hat{\mathbf{w}}}(\mathbf{x}_t)]$$

$$= \sigma^2 + [\text{bias}(f_{\hat{\mathbf{w}}}(\mathbf{x}_t))]^2 + \text{var}(f_{\hat{\mathbf{w}}}(\mathbf{x}_t))$$

3 sources of error

flexibility of the model

Summary of bias-variance tradeoff

strin CS229: Machi

What you can do now...

- Contrast relationship between model complexity and train, true and test loss
- Compute training and test error given a loss function for different model complexities
- List and interpret the 3 sources of avg. prediction error
 - Irreducible error, bias, and variance