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Fit data with a line or … ? 
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What about a quadratic function?
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Even higher order polynomial
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Do you believe this fit?
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Do you believe this fit?

Minimizes RSS, 
but bad predictions
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“Remember that all models are wrong; the 
practical question is how wrong do they have 

to be to not be useful.” George Box, 1987.
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Assessing the loss
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Assessing the loss
Part 1: Training error
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Define training data
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Define training data
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Example:
Fit quadratic to minimize RSS
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Example: 
Use squared error loss (y-fŵ(x))2
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Training error (ŵ) = 1/N *

[($train 1-fŵ(sq.ft.train 1))2

+ ($train 2-fŵ(sq.ft.train 2))2

+ ($train 3-fŵ(sq.ft.train 3))2

+ … include all 
training houses]
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Training error vs. model complexity
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Is training error a good measure of predictive 
performance?
Issue: 
Training error is overly optimistic…ŵ was fit to training data
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Small training error ≠ good predictions 
(unless training data includes 

everything you might ever see)
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Assessing the loss
Part 2: Generalization (true) error
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Generalization error

Really want estimate of loss over all possible (    ,$) pairs
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Lots of houses
in neighborhood,
but not in dataset
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Generalization error definition

Really want estimate of loss over all possible (    ,$) pairs

Formally:

generalization error = Ex,y[L(y,fŵ(x))]
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fit using training data

average over all possible
(x,y) pairs weighted by 

how likely each is
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Generalization error vs. model complexity
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True error vs. model complexity
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Assessing the loss
Part 3: Test error
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Training, true, test error vs. model complexity
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3 sources of error + 
the bias-variance tradeoff
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3 sources of error

In forming predictions, there are 3 sources of error:

1. Noise 

2. Bias

3. Variance
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Data inherently noisy
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Bias contribution

Suppose we fit a constant function
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Bias contribution

Over all possible size N training sets,
what do I expect my fit to be?
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Bias contribution

Bias(x) = fw(true)(x) - fw̄(x)
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Is our approach flexible 
enough to capture fw(true)?
If not, error in predictions.



CS229: Machine Learning30

Variance contribution

How much do specific fits vary from the expected fit?
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Variance contribution

How much do specific fits vary from the expected fit?
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Variance contribution

How much do specific fits vary from the expected fit?
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If so, erratic predictions
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Variance of high-complexity models

Assume we fit a high-order polynomial
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Variance of high-complexity models

Suppose we fit a high-order polynomial
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Variance of high-complexity models
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Bias of high-complexity models
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Sum of 3 sources of error
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Average squared error at xt

= σ2 + [bias(fŵ(xt))]2 + var(fŵ(xt)) 
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Bias-variance tradeoff
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Error vs. amount of data
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Why 3 sources of error?
A formal derivation
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Deriving expected 
prediction error
Expected prediction error

= Etrain [generalization error of ŵ(train)]

= Etrain [Ex,y[L(y,fŵ(train)(x))]]

1. Look at specific xt

2. Consider L(y,fŵ(x)) = (y-fŵ(x))2

Expected prediction error at xt

= Etrain, [(yt-fŵ(train)(xt))2]
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Simplifying Notation

• Expected prediction error at xt

= Etrain, [(yt-fŵ(train)(xt))2]
• Simple (and abusive J) notation:

- yt → y

- fw(true)(xt) → 𝑓
- fŵ(train)(xt) → "𝑓

- Etrain[fŵ(train)(xt)] = f (xt) → ̅𝑓
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yt

!𝑤
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Deriving expected 
prediction error
Expected prediction error at xt

= Etrain, [(yt-fŵ(train)(xt))2]= Etrain[(y− "𝑓)2]=

= Etrain[(y-𝑓) + (𝑓- "𝑓))2]
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Equating MSE with 
bias and variance

MSE[fŵ(train)(xt)]
= Etrain[(𝑓 – "𝑓)2]

= Etrain[((𝑓– ̅𝑓) + ( ̅𝑓– "𝑓))2]
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Putting it all together

Expected prediction error at xt

= σ2 + MSE[fŵ(xt)]
= σ2 + [bias(fŵ(xt))]2 + var(fŵ(xt))
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3 sources of error
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Summary of 
bias-variance tradeoff
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What you can do now…

• Contrast relationship between model complexity and 
train, true and test loss

• Compute training and test error given a loss function for 
different model complexities

• List and interpret the 3 sources of avg. prediction error
- Irreducible error, bias, and variance
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