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Supervised Learning
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Supervised Learning: Recap

o Given: a set of data points (or attributes) {x(1), x(®) ... x(M1 and their associated labels
{yW,y®, . y(m}
e Dimensions: x usually d-dimensional € R?, y typically scalar

o Goal: build a model that predicts y from x for unseen x
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Supervised Learning
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Supervised Learning: Recap

Types of predictions
@ y is continuous, real-valued: Regression
o Example: Linear regression
@ y is discrete classes: Classification

o Example: Logistic regression, SVM, Naive Bayes
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Supervised Learning
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Supervised Learning: Recap

Types of models
o Discriminative
Directly estimate p(y|x) by learning decision boundary
Example: Logistic regression, SVM
Generative
Models the joint distribution p(x, y)
Estimate p(x|y) and infer p(y|x) from it
Can generate new samples

Example: GDA, Naive Bayes
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Supervised Learning
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Notations and Concepts

o Hypothesis: Denoted by hy. Given an input x(7), predicted output is hy(x())
@ Loss Function: Function L(z,y) : R x Y — R computes how different the predicted value
z and the ground truth label are

Least squared error Logistic loss Hinge loss Cross-entropy
1 9 ylog(z) + (1 — y)log(1
g(y —z)° log(1 + exp(—yz)) max(0,1 — yz) ‘ _\|

yeR y=1 y=1 0 y=1
Linear regression Logistic regression SVM Neural Network
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Supervised Learning
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Notations and Concepts

@ Cost function: Function J taking model parameters 6 as input and giving a score to reflect
how badly the model performs. Sum of loss over all predictions

m

10 =" L(ha(x1), y D)

i=1

o Likelihood: Maximizing likelihood L(#) corresponds to finding the "best" distribution of
data given a set of parameters. We usually find the log likelihood ¢(6) = log L(#) and
maximize it.

0" = argmaxy £(6)
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Optimization
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Optimization: Gradient Descent

@ To find the optimal # that minimizes the cost function J(6), we can use gradient descent
with a learning rate « € R
00+ = 9() — v, J(0)

Stochastic Gradient Descent

@ In Stochastic gradient descent (SGD), we update the parameter based on each training
example, whereas in batch gradient descent we update based on a batch of training
examples.
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Optimization
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Optimization: Newton’s method

@ Numerical method to estimate 6 such that J'(6) is 0

o We update 0 as follows:
J'(60)
J//(g(t))

p(t+1) — g(t) _

@ For the multi-dimensional case:

-1
ot+1) — (1) _ [vgJ(g(t))} Vo (6®)

CS229 Midterm Review Fall 2022 Nandita Bhaskhar 10/39



Optimization
[e]e]e] ]

Recap: Gradients and Hessians

o Gradient and Hessian (differentiable function f : RY — R)

.
— | of of d

Vif = |8 ... L] eR

2f 0%f

2 Dadxa
Vif=| + .. |eR

0% f f

T 0
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Linear Regression
oeo

Linear Regression

o Model: hy(x) =0Tx
@ Training data: {(x(i) m)}? x() ¢ R

o Loss: J(0) = 22, 1( ( ) y())
e Update rule:

n

SEEVOESY (hg(x(i)) _ yu)) (0

i=1
Stochastic Gradient Descent (SGD)
Pick one data point x() and then update:

p(t+1) — p(t) _ (hg(x(i)) _ y(i)> (0
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Linear Regression
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Solving Least Squares: Closed Form

o Loss in matrix form: J(0) = & | X6 — yH% where X € R™9 y € R"
e Normal Equation (set gradient to 0):

XT(X0*—y)=0

o Closed form solution: .
- (XTX) xTy
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Logistic Regression
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Logistic Regression

A binary classification model and y() € {0,1}
@ Assumed model:

8o (x) ify=1 1
10) = , h _
p(y|x90) {1_8_0()() fy -0 where gy (x) = 57

o Log-likelihood function:
= Z log p(y!") | x1; )

_ Z [ log go(x") + (1 — y7) log(1 — gy(x1))

e Find parameters through maximizing log-likelihood, argmax, ¢ (6) (in Psetl).
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Sigmoid and Softmax

e Sigmoid: The sigmoid function (also known as logistic function) is given by:

1

g8 = 1=

@ Derivative of sigmoid:
g(z)(1 - g(2))

@ Softmax regression: Also called as multi-class logistic regression, it generalizes logistic
regression to multi-class cases

exp (QZ-X

p(y = k|x; 0) > @il

CS229 Midterm Review Fall 2022 Nandita Bhaskhar 17 /39



Exponential Family
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Exponential Family
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Exponential Family

Definition

Probability distribution with natural or canonical parameter 7, sufficient statistic T(y) and
a log-partition function a(7n) whose density (or mass function) can be written as

plyim =b(y)ep (0" T(y)—a(n))
e Oftentimes, T(y) =y

@ In many cases, exp (—a(n)) can be considered as a normalization term that makes the
probabilities sum to one

CS229 Midterm Review Fall 2022 Nandita Bhaskhar 19 /39



Exponential Family
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Common Exponential Distributions

Bernoulli distribution:

prio) =07 (1= = oo (1og (125 ) )y +1og(1 - 0)

o
= b(y)=1, T(y)=y, n=log <1_¢ , a(n)=log(l+e")
More examples:
Categorical distribution, Poisson distribution, Multivariate normal distribution, etc
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Exponential Family
00080

Common Exponential Distributions

Distribution n T(y) a(n) b(y)
Bernoulli log (%) Yy log(1 + exp(n)) 1
(Gaussian I y 92—3 x,% exp (— 32—)

1
Poisson log(A) y e ”
Geometric log(1 — @) y log (199) 1
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Exponential Family
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Properties

o E[T(Y)in] =Vya(n)

e Var(T (Y);n) = V%a(n)
Non-exponential Family Distribution
Uniform distribution over interval [a, b]:

1
p(y;a b)= b—a 1{a§y§b}

Reason: b(y) cannot depend on parameter 7.
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Generalized Linear Model (GLM)

Generalized Linear Models (GLM) aim at predicting a random variable y as a function of x and
rely on the following components:

Assumed model:

p(y | x; 0) ~ ExponentialFamily (1)
°en=0"x

@ Predictor: h(x) =E[T (Y);n] = Vya(n).
o Fitting through maximum likelihood:

— (y®
m@axﬁ maxz | x();
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GLMs
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Generalized Linear Model (GLM)

Examples
@ GLM under Bernoulli distribution: Logistic regression
@ GLM under Poisson distribution: Poisson regression (in Psetl)
@ GLM under Normal distribution: Linear regression

@ GLM under Categorical distribution: Softmax regression
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Generative Algorithms
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Gaussian Discriminant Analysis (GDA)

Generative Algorithm for Classification

@ Learn p(x | y) and p(y)

o Classify through Bayes rule: argmax, p(y | x) = argmax, p(x | y) p(y)
GDA Formulation

o Assume p (x| y) ~ N (uy, X) for some u, € RY and & € R9*d

e Estimate iy, X and p(y) through maximum likelihood, which is

n

argmax y [Iog p(x | y) + log p(y! ))}

i=1

i1 ly0-y) >in1 1{y(i>:y}x(i) 1<, :
ply) = — u, = — ,Z:fg X(')—,u(i) X(')—,u(i)T
( ) n y ZI:]. ]‘{y(’)zy} n I:1( y )( y )
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Generative Algorithms
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Naive Bayes

Formulation
o Assume p(x | y) = [T p (5 | ¥)
e Estimate p(x; | y) and p(y) through maximum likelihood, which gives

n
Z’:]' 1{X‘,-(I):Xj7y(i):}/} 27:1 l{y(i):y}
ST ;o Py)=——
i=1 H{y=y} n

p(xly)=
Laplace Smoothing
Assume x; takes value in {1,2,..., k}, the corresponding modified estimator is
1+ 0oy 0=y
k + Zi:l 1{y (0 :y}

p(x|ly)=
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Kernels
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Kernel

Core idea: reparametrize parameter 6 as a linear combination of featurized vectors
Feature map: ¢ : RY — RP
Fitting linear model with gradient descent gives us

0= o)
i=1

Predict a new example z:

ho(2) = Bis(x")T o (2) Z@ ),z
i=1

It brings nonlinearity without much sacrifice in efficiency as long as K (-, -) can be computed
efficiently
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[e]e] o)
Kernel

e Given a feature mapping ¢, we define the kernel K as follows:
K(x,2) = ¢(x)"¢(2)
o "Kernel trick" to compute the cost function using the kernel because we actually don't need
to know the explicit mapping ¢, which is often very complicated
@ Instead, only the values K(x, z) are needed
@ Suppose K(x(i),x(j)) = Kj;

10
00

g g} then is K a valid kernel function?

o If K= [ } then is K a valid kernel function?

|
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Supervised Learning

Optimization Linear Regression

ic Regression E ponrntnl Family

Kernel

Theorem

K (x, z) is a valid kernel if and only if for any set of {x1), ..

GLI Is Grnw ative Algorithms Kernels NNs
[e]e]e] )

-, x(M} its Gram matrix, defined as

K(x(l), X(l)) K(x(l), X(n))
G = : : e R™"
K(x(”), X(l)) K(x("), X(n))
is positive semi-definite.
Examples
e Polynomial kernels: K (x,z) = (x"z+ c)d Vc>0and deN

o Gaussian kernels: K (x, z) = exp ( M) Vo2 >0
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NNs
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Neural Networks

Input layer Hidden layer 1 Hidden layer k Qutput layer

By noting 1 the ith layer of the network and j the jth hidden unit of the layer, we have:

where we note w, b, z the weight, bias and output respectively.
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NNs
0000000

Neural Networks

Multi-layer Fully-connected Neural Networks (with Activation Function f)

f (Wlllx + blll)
Sl — f (lelam 1 b[2])

i

Jr-1 — (W[r—l]a[r—2] + b[r—l])

By (x) = all = Wi zlr=11 4 bl
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Activation Functions

Sigmoid

9(z)

B3| =

CS229 Midterm Review Fall 2022

Tanh
e’ —e
g(z) - e*+e
1--

RelU

g(z) = max(0, z)

NNs
0000000

Leaky RelU

g(z) = max(ez, z)
with e < 1
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NNs
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Updating Weights

Step 1: Take a batch of training data
Step 2: Perform forward propagation to obtain the corresponding loss
Step 3: Backpropagate the loss to get the gradients

Step 4: Use the gradients to update the weights of the network
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NNs
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Backpropagation
Let J be the loss function and zlKl = WIKlalk=1] 4 plkI - By chain rule, we have
8J aJ o2 s 4 8J oJ 4 0J  aJ
— 1 — a[ ] — [I‘ ]T = —
owll g M awld g5l owlrl — 9zl To9blrl 9zl
ij i ij i
aJ:ia_jﬁz}r]:i 9J W,[_’] — 9J — wliT 0J
r— r r—1 r 1 r—1 r
BaE 1] = 821-[ 1 34 ] = 82}] J dalr—11 ozIr]
oJ oJ
sl _ [T s[r] ! [r=1Y . s[r—1]
oo =0 = 8z[r*1]_<W o) o f (A1) =6
oJ oJ
Yy -1 2] T _ s[r—1]
awi— — o "a © o apir—1 g
Continue for layers r —2,...,1.
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000000
Tips
Practice, practice, practice

For proofs, give reasoning and show how you go from one step to the next

Prepare a cheat sheet — easy to run out of time in open book exams

Pay attention to notation and indices. "Silly mistakes" can completely change the meaning
of your reasoning

@ Think in vector terms!

All the best :) J
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