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Supervised Learning: Recap

Given: a set of data points (or attributes) {x (1), x (2), ..., x (m)} and their associated labels
{y (1), y (2), ..., y (m)}
Dimensions: x usually d-dimensional ∈ Rd , y typically scalar
Goal: build a model that predicts y from x for unseen x
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Supervised Learning: Recap

Types of predictions
y is continuous, real-valued: Regression
Example: Linear regression
y is discrete classes: Classification
Example: Logistic regression, SVM, Naive Bayes
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Supervised Learning: Recap

Types of models
Discriminative
Directly estimate p(y |x) by learning decision boundary
Example: Logistic regression, SVM
Generative
Models the joint distribution p(x , y)

Estimate p(x |y) and infer p(y |x) from it
Can generate new samples
Example: GDA, Naive Bayes
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Notations and Concepts

Hypothesis: Denoted by hθ. Given an input x (i), predicted output is hθ(x
(i))

Loss Function: Function L(z , y) : R× Y 7→ R computes how different the predicted value
z and the ground truth label are
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Notations and Concepts

Cost function: Function J taking model parameters θ as input and giving a score to reflect
how badly the model performs. Sum of loss over all predictions

J(θ) =
m∑
i=1

L(hθ(x
(i)), y (i))

Likelihood: Maximizing likelihood L(θ) corresponds to finding the "best" distribution of
data given a set of parameters. We usually find the log likelihood ℓ(θ) = log L(θ) and
maximize it.

θ∗ = argmaxθ ℓ(θ)
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Optimization: Gradient Descent

To find the optimal θ that minimizes the cost function J(θ), we can use gradient descent
with a learning rate α ∈ R

θ(t+1) = θ(t) − α∇θJ(θ
(t))

Stochastic Gradient Descent
In Stochastic gradient descent (SGD), we update the parameter based on each training
example, whereas in batch gradient descent we update based on a batch of training
examples.
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Optimization: Newton’s method

Numerical method to estimate θ such that J ′(θ) is 0
We update θ as follows:

θ(t+1) = θ(t) − J ′(θ(t))

J ′′(θ(t))

For the multi-dimensional case:

θ(t+1) = θ(t) −
[
∇2

θJ(θ
(t))

]−1
∇θJ(θ

(t))
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Recap: Gradients and Hessians

Gradient and Hessian (differentiable function f : Rd 7→ R)

∇x f =
[

∂f
∂x1

. . . ∂f
∂xd

]T
∈ Rd

∇2
x f =


∂2f
∂x2

1
. . . ∂2f

∂x1∂xd
...

. . .
...

∂2f
∂xd∂x1

. . . ∂2f
∂x2

d

 ∈ Rd×d
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Linear Regression

Model: hθ (x) = θT x

Training data:
{(

x (i), y (i)
)}n

i=1, x
(i) ∈ Rd

Loss: J (θ) = 1
2
∑n

i=1
(
hθ(x

(i))− y (i)
)2

Update rule:

θ(t+1) = θ(t) − α

n∑
i=1

(
hθ(x

(i))− y (i)
)
x (i)

Stochastic Gradient Descent (SGD)
Pick one data point x (i) and then update:

θ(t+1) = θ(t) − α
(
hθ(x

(i))− y (i)
)
x (i)
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Solving Least Squares: Closed Form

Loss in matrix form: J (θ) = 1
2 ∥Xθ − y∥2

2, where X ∈ Rn×d , y ∈ Rn

Normal Equation (set gradient to 0):

XT (Xθ⋆ − y) = 0

Closed form solution:
θ⋆ =

(
XTX

)−1
XT y
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Logistic Regression

A binary classification model and y (i) ∈ {0, 1}
Assumed model:

p (y | x ; θ) =

{
gθ (x) if y = 1
1 − gθ (x) if y = 0

, where gθ (x) =
1

1 + e−θT x

Log-likelihood function:

ℓ (θ) =
n∑

i=1

log p(y (i) | x (i); θ)

=
n∑

i=1

[
y (i) log gθ(x

(i)) + (1 − y (i)) log(1 − gθ(x
(i)))

]
Find parameters through maximizing log-likelihood, argmaxθ ℓ (θ) (in Pset1).
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Sigmoid and Softmax

Sigmoid: The sigmoid function (also known as logistic function) is given by:

g (z) =
1

1 + e−z

Derivative of sigmoid:
g(z)(1 − g(z))

Softmax regression: Also called as multi-class logistic regression, it generalizes logistic
regression to multi-class cases

p(y = k|x ; θ) =
exp θTk x∑
j exp θ

T
j x
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Exponential Family

Definition
Probability distribution with natural or canonical parameter η, sufficient statistic T (y) and
a log-partition function a(η) whose density (or mass function) can be written as

p (y ; η) = b (y) exp
(
ηTT (y)− a (η)

)
Oftentimes, T (y) = y

In many cases, exp (−a(η)) can be considered as a normalization term that makes the
probabilities sum to one
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Common Exponential Distributions

Bernoulli distribution:

p (y ;ϕ) = ϕy (1 − ϕ)1−y = exp

((
log

(
ϕ

1 − ϕ

))
y + log (1 − ϕ)

)

=⇒ b (y) = 1, T (y) = y , η = log

(
ϕ

1 − ϕ

)
, a (η) = log (1 + eη)

More examples:
Categorical distribution, Poisson distribution, Multivariate normal distribution, etc
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Common Exponential Distributions
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Properties

E [T (Y ) ; η] = ∇ηa (η)

Var (T (Y ) ; η) = ∇2
ηa (η)

Non-exponential Family Distribution
Uniform distribution over interval [a, b]:

p (y ; a, b) =
1

b − a
· 1{a≤y≤b}

Reason: b (y) cannot depend on parameter η.
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Generalized Linear Model (GLM)

Generalized Linear Models (GLM) aim at predicting a random variable y as a function of x and
rely on the following components:
Assumed model:

p (y | x ; θ) ∼ ExponentialFamily (η)

η = θT x

Predictor: h (x) = E [T (Y ) ; η] = ∇ηa (η).
Fitting through maximum likelihood:

max
θ

ℓ (θ) = max
θ

n∑
i=1

p(y (i) | x (i); η)
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Generalized Linear Model (GLM)

Examples
GLM under Bernoulli distribution: Logistic regression
GLM under Poisson distribution: Poisson regression (in Pset1)
GLM under Normal distribution: Linear regression
GLM under Categorical distribution: Softmax regression

CS229 Midterm Review Fall 2022 Nandita Bhaskhar 25 / 39



Supervised Learning Optimization Linear Regression Logistic Regression Exponential Family GLMs Generative Algorithms Kernels NNs

Outline

1 Supervised Learning

2 Optimization

3 Linear Regression

4 Logistic Regression

5 Exponential Family

6 GLMs

7 Generative Algorithms

8 Kernels

9 NNs

CS229 Midterm Review Fall 2022 Nandita Bhaskhar 26 / 39



Supervised Learning Optimization Linear Regression Logistic Regression Exponential Family GLMs Generative Algorithms Kernels NNs

Gaussian Discriminant Analysis (GDA)

Generative Algorithm for Classification
Learn p (x | y) and p (y)

Classify through Bayes rule: argmaxy p (y | x) = argmaxy p (x | y) p (y)
GDA Formulation

Assume p (x | y) ∼ N (µy ,Σ) for some µy ∈ Rd and Σ ∈ Rd×d

Estimate µy , Σ and p (y) through maximum likelihood, which is

argmax
n∑

i=1

[
log p(x (i) | y (i)) + log p(y (i))

]

p (y) =

∑n
i=1 1{y (i)=y}

n
, µy =

∑n
i=1 1{y (i)=y}x

(i)∑n
i=1 1{y (i)=y}

,Σ =
1
n

n∑
i=1

(x (i) − µy (i))(x (i) − µy (i))T
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Naive Bayes

Formulation
Assume p (x | y) =

∏d
j=1 p (xj | y)

Estimate p (xj | y) and p (y) through maximum likelihood, which gives

p (xj | y) =

∑n
i=1 1{

x
(i)
j =xj ,y (i)=y

}∑n
i=1 1{y (i)=y}

, p (y) =

∑n
i=1 1{y (i)=y}

n

Laplace Smoothing
Assume xj takes value in {1, 2, . . . , k}, the corresponding modified estimator is

p (xj | y) =
1 +

∑n
i=1 1{

x
(i)
j =xj ,y (i)=y

}
k +

∑n
i=1 1{y (i)=y}
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Kernel

Core idea: reparametrize parameter θ as a linear combination of featurized vectors
Feature map: ϕ : Rd 7→ Rp

Fitting linear model with gradient descent gives us

θ =
n∑

i=1

βiϕ(x
(i))

Predict a new example z :

hθ (z) =
n∑

i=1

βiϕ(x
(i))Tϕ (z) =

n∑
i=1

βiK (x (i), z)

It brings nonlinearity without much sacrifice in efficiency as long as K (·, ·) can be computed
efficiently
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Kernel

Given a feature mapping ϕ, we define the kernel K as follows:

K (x , z) = ϕ(x)Tϕ(z)

"Kernel trick" to compute the cost function using the kernel because we actually don’t need
to know the explicit mapping ϕ, which is often very complicated
Instead, only the values K (x , z) are needed
Suppose K (x (i), x (j)) = Kij

If K =

[
1 0
0 0

]
then is K a valid kernel function?

If K =

[
3 5
5 3

]
then is K a valid kernel function?
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Kernel

Theorem
K (x , z) is a valid kernel if and only if for any set of {x (1), . . . , x (n)}, its Gram matrix, defined as

G =

K (x (1), x (1)) . . . K (x (1), x (n))
...

. . .
...

K (x (n), x (1)) . . . K (x (n), x (n))

 ∈ Rn×n

is positive semi-definite.

Examples
Polynomial kernels: K (x , z) =

(
xT z + c

)d , ∀ c ≥ 0 and d ∈ N

Gaussian kernels: K (x , z) = exp
(
−∥x−z∥2

2
2σ2

)
, ∀ σ2 > 0
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Neural Networks
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Neural Networks

Multi-layer Fully-connected Neural Networks (with Activation Function f )

a[1] = f
(
W [1]x + b[1]

)
a[2] = f

(
W [2]a[1] + b[2]

)
. . .

a[r−1] = f
(
W [r−1]a[r−2] + b[r−1]

)
hθ (x) = a[r ] = W [r ]a[r−1] + b[r ]
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Activation Functions
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Updating Weights

Step 1: Take a batch of training data
Step 2: Perform forward propagation to obtain the corresponding loss
Step 3: Backpropagate the loss to get the gradients
Step 4: Use the gradients to update the weights of the network
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Backpropagation

Let J be the loss function and z [k] = W [k]a[k−1] + b[k]. By chain rule, we have

∂J

∂W
[r ]
ij

=
∂J

∂z
[r ]
i

∂z
[r ]
i

∂W
[r ]
ij

=
∂J

∂z
[r ]
i

a
[r−1]
j =⇒ ∂J

∂W [r ]
=

∂J

∂z [r ]
a[r−1]T ,

∂J

∂b[r ]
=

∂J

∂z [r ]

∂J

∂a
[r−1]
i

=
dr∑
j=1

∂J

∂z
[r ]
j

∂z
[r ]
j

∂a
[r−1]
i

=
dr∑
j=1

∂J

∂z
[r ]
j

W
[r ]
ji =⇒ ∂J

∂a[r−1] = W [r ]T ∂J

∂z [r ]

∂J

∂z [r ]
:= δ[r ] =⇒ ∂J

∂z [r−1] =
(
W [r ]T δ[r ]

)
⊙ f ′

(
z [r−1]

)
:= δ[r−1]

=⇒ ∂J

∂W [r−1] = δ[r−1]a[r−2]T ,
∂J

∂b[r−1] = δ[r−1]

Continue for layers r − 2, . . . , 1.
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Tips

Practice, practice, practice
For proofs, give reasoning and show how you go from one step to the next
Prepare a cheat sheet – easy to run out of time in open book exams
Pay attention to notation and indices. "Silly mistakes" can completely change the meaning
of your reasoning
Think in vector terms!

All the best :)
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