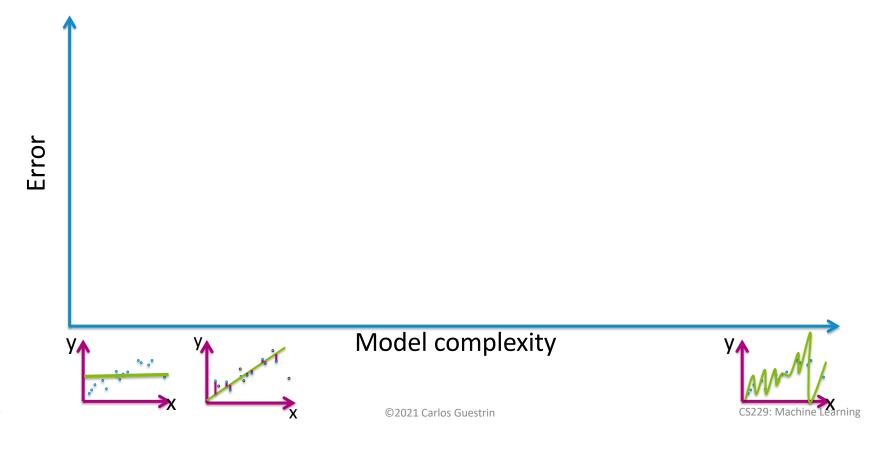
Ridge Regression:

Regulating overfitting when using many features

CS229: Machine Learning Carlos Guestrin Stanford University Slides include content developed by and co-developed with Emily Fox

©2021 Carlos Guestrin

Training, true vs. model complexity

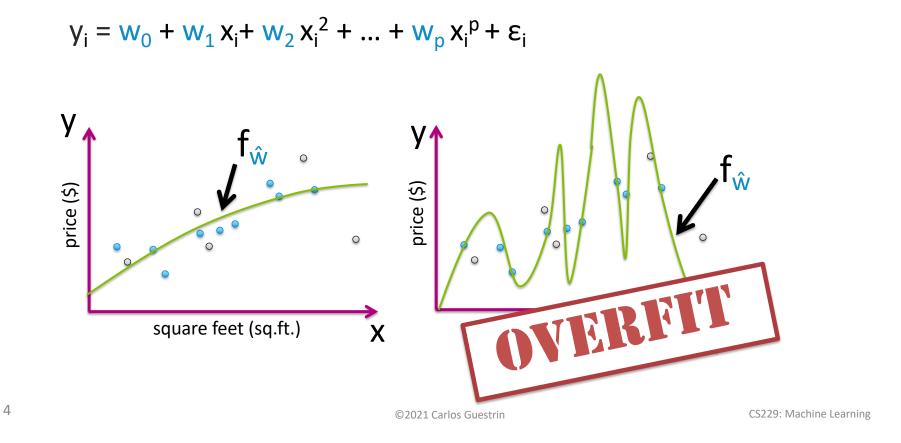


2

Overfitting of polynomial regression

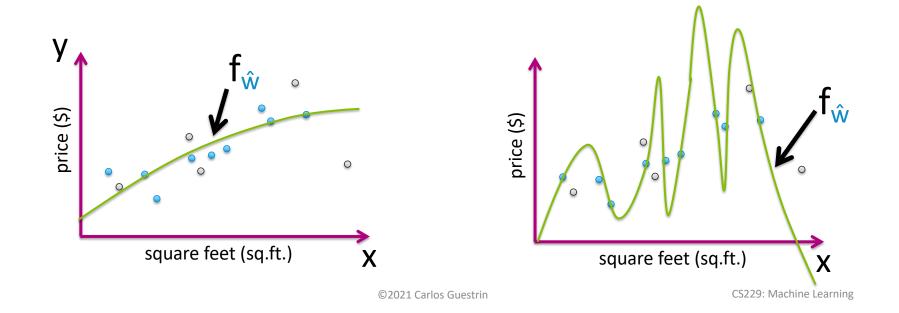
©2021 Carlos Guestrin

Flexibility of high-order polynomials

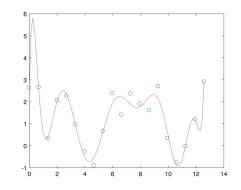


Symptom of overfitting

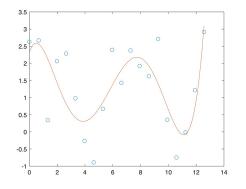
Often, overfitting associated with very large estimated parameters \hat{w}



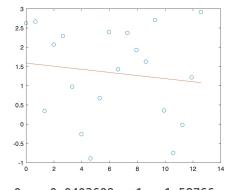
Polynomial fit example



 $w^0 = -3.33355 \\ -0.00664276 \quad w^1 = 3.24407 \\ -0.00580734 \\ w^5 = 0.0664276 \quad w^6 = -0.543967 \quad w^7 = 3.24647 \quad w^8 = -14.1922 \quad w^9 = 44.8987 \quad w^{10} = -98.886 \\ w^{11} = 139.912 \quad w^{12} = -109.084 \quad w^{13} = 32.5699 \quad w^{14} = 2.62986 \\$



w0 = 0.00142109 w1 = -0.0412048 w2 = 0.402433w3 = -1.45804 w4 = 1.16305 w5 = 2.32569



w0 = -0.0403609 w1 = 1.58766

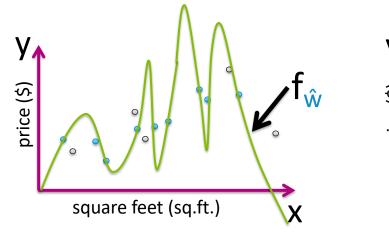
How does # of observations influence overfitting?

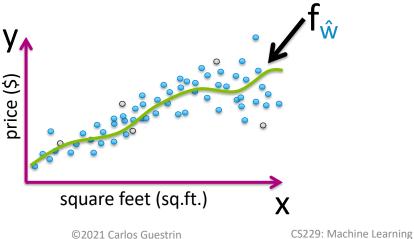
Few observations (N small)

 \rightarrow rapidly overfit as model complexity increases

Many observations (N very large)

 \rightarrow harder to overfit





Overfitting of linear regression models more generically

©2021 Carlos Guestrin

Overfitting with many features

Not unique to polynomial regression, but also if lots of inputs (d large)

Or, generically, lots of features (D large) $y = \sum_{j=0}^{D} w_j h_j(x) + \varepsilon$

- Square feet
- # bathrooms
- # bedrooms
- Lot size

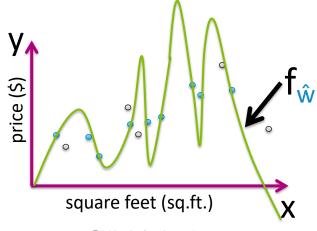
- ...

– Year built

How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

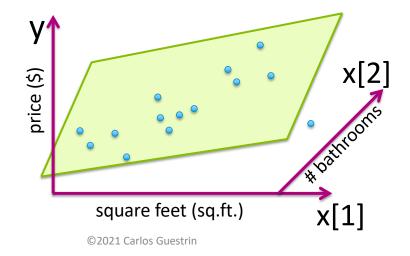
Data must include representative examples of all possible (sq.ft., \$) pairs to avoid overfitting



How does # of inputs influence overfitting?

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,...):

Data must include examples of all possible (sq.ft., #bath, #bed, lot size, year,..., \$) combos to avoid overfitting



Regularization: Adding term to cost-of-fit to prefer small coefficients

©2021 Carlos Guestrin

Desired total cost format

Want to balance:

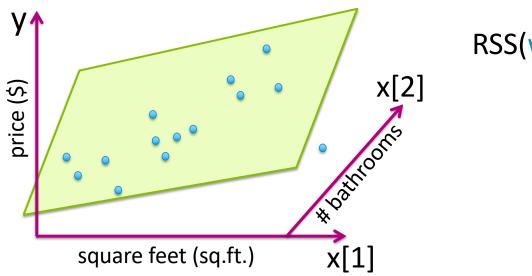
- i. How well function fits data
- ii. Magnitude of coefficients

Total cost =

measure of fit + measure of magnitude of coefficients

©2021 Carlos Guestrin

Measure of fit to training data



$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{h}(\mathbf{x}_i)^{\mathsf{T}} \mathbf{w})^2$$

CS229: Machine Learning

©2021 Carlos Guestrin

Measure of magnitude of regression coefficient

What summary # is indicative of size of regression coefficients?

- Sum?
- Sum of absolute value?
- Sum of squares (L₂ norm)

Consider specific total cost

Total cost =

measure of fit + measure of magnitude of coefficients

CS229: Machine Learning

17

©2021 Carlos Guestrin

Ridge Regression (aka L₂ regularization)

What if $\hat{\boldsymbol{w}}$ selected to minimize

 $RSS(w) + \lambda ||w||_2^2$

If $\lambda = 0$:

lf <mark>λ</mark>=∞:

If λ in between:

©2021 Carlos Guestrin

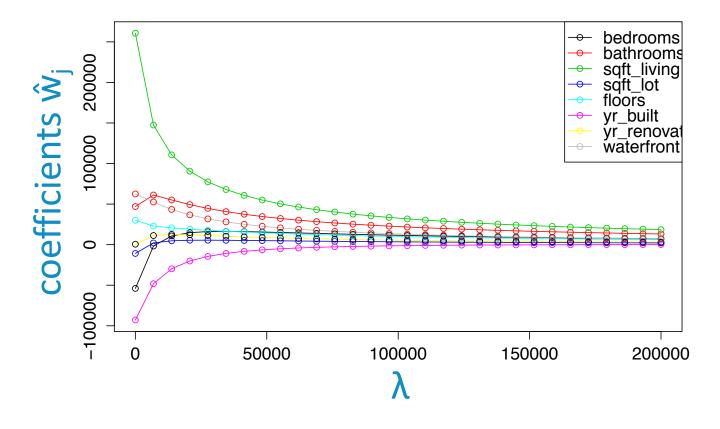
Bias-variance tradeoff

Large λ : bias, variance (e.g., $\hat{w} = 0$ for $\lambda = \infty$)

Small λ :

bias, variance (e.g., standard least squares (RSS) fit of high-order polynomial for λ=0)

Coefficient path



©2021 Carlos Guestrin

How to choose λ

©2021 Carlos Guestrir

The regression/ML workflow

- 1. Model selection Need to choose tuning parameters λ controlling model complexity
- Model assessment Having selected a model, assess generalization error

1. Model selection

For each considered λ :

- i. Estimate parameters \hat{w}_{λ} on training data
- ii. Assess performance of \hat{w}_{λ} on training data
- iii. Choose λ^* to be λ with lowest train error
- 2. Model assessment

Compute test error of \hat{w}_{λ^*} (fitted model for selected λ^*) to approx. true error

Training set	Test set
--------------	----------

Issue: Both λ and \hat{w} selected on training data then $\lambda^* = 0$

- λ^* was selected to minimize training error (i.e., λ^* was fit on training data)
- Most complex model will have lowest training error

1. Model selection

For each considered λ :

- i. Estimate parameters \hat{w}_{λ} on training data
- ii. Assess performance of \hat{w}_{λ} on test data
- iii. Choose λ^* to be λ with lowest test error
- 2. Model assessment

Compute test error of \hat{w}_{λ^*} (fitted model for selected λ^*) to approx. true error

Issue: Just like fitting $\hat{\mathbf{w}}$ and assessing its performance both on training data

- λ^* was selected to minimize test error (i.e., λ^* was fit on test data)
- If test data is not representative of the whole world, then \hat{w}_{λ^*} will typically perform worse than test error indicates

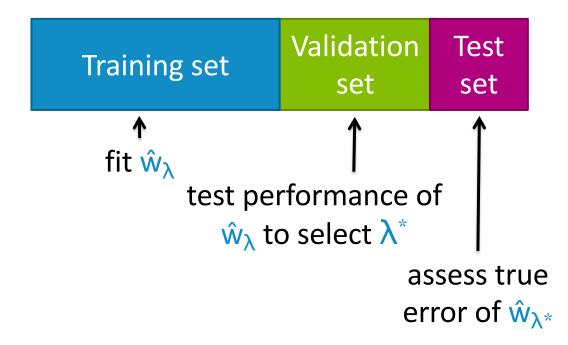
Practical implementation

Training cot	Validation	Test
Training set	set	set

Solution: Create two "test" sets!

- 1. Select λ^* such that \hat{w}_{λ^*} minimizes error on validation set
- 2. Approximate true error of \hat{w}_{λ^*} using test set

Practical implementation



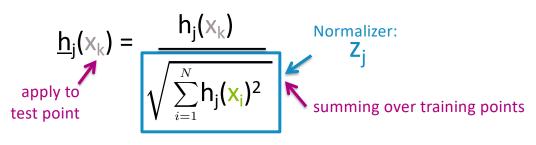
Feature normalization

©2021 Carlos Guestrir

Normalizing features

Scale training columns (not rows!) as:

 $\underline{h}_{j}(\mathbf{x}_{k}) = \frac{h_{j}(\mathbf{x}_{k})}{\sqrt{\sum_{k=1}^{N} h_{j}(\mathbf{x}_{i})^{2}}}$ Apply same training scale factors to test data:



©2021 Carlos Guestrin

Normalizer:

Zi

Summary for ridge regression

©2021 Carlos Guestri

What you can do now...

- Describe what happens to magnitude of estimated coefficients when model is overfit
- Motivate form of ridge regression cost function
- Describe what happens to estimated coefficients of ridge regression as tuning parameter λ is varied
- Interpret coefficient path plot
- Use a validation set to select the ridge regression tuning parameter λ
- Handle intercept and scale of features with care