
ML	Advice
(Clip	art	day)
Chris	Ré



Announcements

• Mid-quarter	feedback	(See	Piazza	Post	#397)

• Midterm	exam	location:	CEMEX	(Wed	May	15,	7-10pm)

• Midterm	Syllabus:	Upto EM	algorithm	(Wednesday)

• Practice	Midterms:	posted	on	Piazza	(Post	#414)



• This	lecture	is	filled	with	(hopefully	informed)	personal	opinion.

• It	is	high	level	and	presents	some	difficult,	raw	material.

• I	tried	to	include	ideas	that	people	have	told	me	were	helpful	to	them



Phases	of	ML	projects

• Do	you	really	want	an	ML	system?	

• Ok,	so	you	want	to	train	a	model.	
It’s	not	working	well…	now	what?

• Now	you	have	to	live	with	an	ML	
model	and	its	eco	system…



A	Running	Example

• You	want	to	build	a	spam	
detector.
• There	are	lots	of	types	of	
spam,	think	of	email	for	
concreteness.
• You’re	tired	of	all	that	
spam!



Machine	learning	is	driven	by	data.



Acquiring	Data

You	need	realistic	spam	and	not	
spam!
Data	is	hard	to	get.	It’s	critical,	and	
you	will	get	it	wrong.	

Iterate	on	the	collection	
of	data.	It	takes	time	to	

do	so.	



Look	at	your	data.

• You	have	some	spam,	look	it	at	it!
• If	needed,	build	tools	to	look	at	your	data.

• Slice	and	dice:	Spam	from	Europe	different	
than	from	Africa	different	from	US?

• Spam	sent	to	.edu different	than	.com?

• Machine	learning	is	iterative.	
• Your	data	can	change—there	are	adversaries!	

• Spam	changes!	(phone	numbers	in	HT)

• “Become	one	with	the	data”	– Karpathy.	



Create	a	specification

• Machine	learning	doesn’t	obviate	the	need	to	know	
what	you	are	building.
• What	is	SPAM?	Maybe	I	like	ads	for	low	low	rates?

• A	good	specification	has	little	ambiguity.	Someone	
else	should	 be	able	to	read	and	implement	 it.	
• Critical	if	you	want	to	employ	graders!
• Don’t	be	tempted	to	think	ML	answer	“is	kind	of	
ok…”	this	accrues	debt	later	(next	person	has	
trouble).	
• E.g.	extractor	 for	place	names,	then	used	

downstream	for	main	location	(confidence	in	1st
meaningless	 for	the	second)

• Your	specification	mustbe	embodied	 in	a	set	of	
examples.

A	test	set	is	an	
important	part	of	
your	specification.



Simple	descriptive	
dashboards

• Measure	simple	things
• How	many	entities	per	sentence?	How	long	are	
the	sentences?	How	many	verbs?	Keywords	per	
sentence.

• Slice	by	time.	Is	your	SPAM	changing	over	time?
• Earlier	phone	number	change.

• You	want	to	catch,	at	a	glance,	any	changes.
• Story:	Economic	indicators.	Turned	out	provider	had	
given	us	Spanish	data…

• Model	rot	is	real,	sadly.	Monitor	
continuously!	(scoreboarding)



Class	Confusion	Matrices

• See	at	a	glance,	our	accuracy	is	pretty	high—but…
• Discuss	our	false	positive	v.	false	negative	rates?

• What	would	happen	if	we	added	spear	phishing?	Can	help	us	debug	specification!	
• Examine	“top	confused	classes”	if	you	have	many
• Common	when	building	big	ML	models	collaboratively.
• Subtle	distinctions	are	good--but	need	enough	data	and	crispness	to	support	them.

Class	LoanSpam Class	Phishing Class	Good	Email

Predicts	LoanSpam 1000 10 50

Predicts	Phishing 45 505 30

Predicts	Good	Email 7 8 2000



I	have	yet	to	see	anyone	get	preceding	steps	
right	on	first	try.	Build	it	first,	and	iterate!

A	well	running	ML	system	is	a	rewritten	poorly	
running	ML	system.



You	want	to	build	an	ML	model

Which	should	you	build	first?
…try	simple	methods	first…	really	still	debugging.	
Best	ML	folks	treat	models	as	a	way	to	understand.



What	to	build?

• Build	simplest	thing	first.
• Sometimes	what	you	have	code	laying	around…	iterate	quickly!

• Linear	or	logistic	regression	w/	simple	features,	
• You	know	it’s	converging,	easy	to	setup,	lots	of	packages	that	support	it.
• It	runs	fast!	Quick	iteration!
• Features	are	easier	to	understand,	add	information,	do	error	analysis.
• Good	baselines	for	future	work
• Many	projects	get	good	enough	results	here,	and	move	on.
• Or,	more	often,	learn	that	they	didn’t	understand	the	problem	and	refine!



Debugging	Learning	
Algorithms

• Your	goal	is	to	build	an	ad	
spam	detector.	
• You	run	a	logistic	
regression	algorithm.	
• Sadly,	it’s	error	is	too	high!
•What	do	you	do?



What	could	be	wrong?

• Maybe	it’s	the	data	or	your	features?
• Try	getting	more	training	data.
• Try	a	smaller	set	of	features?
• Try	adding	more	features?

• Maybe	it’s	the	optimization	algorithm?
• Run	GD	a	little	while	longer….
• Try	a	different	method,	SGD,	GD,	Newton?

• Maybe	it’s	the	hyperparameters?
• Different	value	of	regularizer?	

• Try	using	a	different	model!



Just	like	compiling!

• Could	hit	train	model,	try	it,	and	run	again!
• Or	you	could	develop	diagnostics	to	help	you	
understand.

• Recall	simple	metrics,	these	catch	data	prep	
bugs	(very	nasty)
• Bias-variance	provides	a	set	of	diagnostics!

We’ll	cover	some	diagnostics	that	have	helped	us.



Diagnostic:	Test	versus	Train	Score.

Train	Error
Test	Error

Training	Set	Size

If	error	is	too	high:	
model	needs	more	capacity!

Fix:	add	features,	more	complex	model

OK:	Training	set	size,	Optimization	algo.

“Test=Train”



Diagnostic:	Test	versus	Train	Score.

Train	Error

Test	Error

Training	Set	Size

Model:	model	needs	more	data,	
or	less	complex	model?

Fix:	Training	set	size,	model	too	complex?

OK:	Optimization	algo.

“Performance	Gap”



Variance	Diagnostic

• Variance	diagnostics.
• Sample	data	set	(k-fold	cross	validation)
• Train	on	different	folds.

• If	the	dev	scores	diff	are	small	relative	to	
your	target	error,	you’re	OK!
• If	you’re	target	error	is	10%,	and	your	variance	~	1%	
fixing	variance	doesn’t	matter!

• If	larger,	too	little	data	or	algo.	instability!



Diagnostic:	Calibration	Plots!

• Your	spam	detector	uses	logistic	regression	(or	softmax last	layer)

It’s	calibrated.	

This	bump	means	there	is	a	lurking	class!	
Need	more	features.	“Calibration	Bump”



What	could	be	wrong?

• Maybe	it’s	the	data	or	your	features?
• Try	getting	more	training	data.
• Try	a	smaller	set	of	features?
• Try	adding	more	features?

• Maybe	it’s	the	hyperparameters?
• Different	value	of	regularizer?	

• Try	using	a	different	model!

Performance	Gap

Performance	Gap
Train	=	Test,	Calibration	bump



Really	rough	guidance

• If	your	test	error	is	OK,	good	for	now!

• Else,	 if	train	==	test	
• Fix:	you	need	a	more	complex	model.

• If	train		<	test	you’re	overfitting.	
• Fix:	Regularize,	 less	complex	model

• If	train	oscillates	wildly,	you	have	a	problem	
with	your	optimization	algorithm.

• If	train	goes	down	lower	with	method	A	than	
method	B,	then	prefer	method	A	J



They’re	all	just	
weights.

• Train	another	model	on	the	same	
features.
• SVM,	logistic,	even	linear—as	long	as	

• Suppose	new	model	does	better	but	you	
want	to	use	the	old	model!

• You	can	plug	in	your	new	model	into	
your	old	objective.	
• If	loss	is	lower	à optimization	problem!
• If	loss	is	higher	 ->	model	problem.	 (harder)
• Examine	where	they	differ	can	reveal	capacity	
differences.



Diagnostics	Summary

•Some	I’ve	used	or	
seen	teams	use	well.
•Cleverness	to	come	up	
with	your	own.
•Think	“unit	testing”.	
It’s	engineering.



Ok,	your	model	is	working.	
How	do	you	improve	it?



Should	we	add	more	features?

• So	our	train	error	is	high,	what	to	do	now?

Labeling	party!



Spoiler:	It’s	a	pipe.

• “ground	truth” contains	
errors.	GT	was	made..
• Fix	the	specification..
• Fix	the	data
• At	least	report	error	
bars!

• If	your	error	rate	in	GT	is	
3%,	then	your	1%	change	
may	not	be	meaningful.

“This	is	not	a	pipe.”



The	art	of	
errors	

• Split	the	error	buckets	into	buckets	such	that	
there	is	some	systematic information	the	
model	is	missing.

• A	good	bucket	for	“relationship	extraction”
• “Her	husband,	Barack	Obama,…”
• “Her	sister,	Venus	Williams…”
• “His	wife,	Serena	Williams…”
• Aha!	Missing	“relationship	name	and	appositive”

• It’s	an	art,	if	you	can’t	group	buckets—you	
may	be	tapped	out!
• Convert	high-level	insight	into	features	is	an	art	
and	skill—practice	it!



Slice-based	Errors.

• Overall	performance	not	as	critical	as	
important	performance.	
• “Call	mom”	should	work
• More	complex	queries	may	be	less	
expected.

• Record	&	scoreboard	on	these	slices.

• Not	all	data	equal!	Monitor	important	
data,	but	be	careful	how	you	draw	
statistical	info	here!



Selecting	more	labels

• It’s	all	about	sampling!

• Uniform	Random	Sampling
• Advantage,	you’ll	 improve	the	error	overall
• Statistically	meaningful.

• Importance-based	sampling.
• Can	be	cost	effective—if	your	class	only	
appears	1	of	10k	times,	would	be	expensive!

• Pick	near	misses?
• Don’t	use	for	evaluation	by	itself.	Why?



Labels	Drift	
(change)	over	time.

Automatic	monitoring	matters.
Adapting	to	customer	taste	change…



Error	Analysis	in	the	Era	of	Deep	Learning

• Error	bucketing	is	still	critical.	

• Minor	miracle:	you	can	add	labels	to	
drive	model	to	predict	the	right	class.

• Selecting	the	right	examples	 is	
important.



Value	of	
Baselines

• Someone	will	ask	if	your	
change	is	worth	it,	be	prepared!

• If	your	fancy	engine	buys	
0.1%	but	runs	1000x	more	
slowly—you	have	a	hard	
tradeoff!

• Try	to	build	simpler	methods.	
Often	use	deep	models	to	
“come	up	with	features”	to	feed	
into	logistic	regression.



Ablation	studies.

• You’ve	built	up	a	model,	it	has	many	
different	components.

• You	want	to	know	which	matter	and	
maybe	which	are	stable!

• Remove	one	feature	at	a	time!
• NB:	Adding	features	+	baseline	could	
overestimate	overlap.

• Measure	performance.
• Critical	for	research.



Which	features

• You	derived	some	of	the	L1	technique	(Lasso).

• Recall:	Selects	a	sparse	model	weights..

• It	enables	you	to	select	models,	 this	changes	how	
you	build	 the	models—often	 toss	in	many	
features,	let	it	pick!

• You	can	freeze	known	good	 features,	select	among	
new	features.



Lasso	Path
Main	idea:	Sweep	the	regularize	
parameter	for	L1,	train	the	model,	
see	when	features	turn	on!

Useful	to	see	how	
valuable	each	feature	

is:	Great	tool!

https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars.html
http://statweb.stanford.edu/~tibs/ftp/lars.pdf



Last	line	of	defense:	Caches	and	Overrides!

• Keep	in	mind,	ML	helps	you	build	software.	It’s	
usually	not	a	goal	in	and	of	itself.

• ML	is	not	infallible.
• If	you	can	write	it	easily,	just	do	it!
• If	it	makes	a	mistake,	put	it	in	a	cache!

• Danger:	you	incur	technical	debt	or	you	avoid	fixing	
actual	issues	in	your	model.

• Use	sparingly,	but	in	any	production	system.

• Hot	fixes!



Research: Massive Multi-Task 
Learning (MMTL)

Primary Task

Capitalizing on supervision at every level of granularity

Auxiliary Tasks
(Token-level)

Query	ParsingPOS	tagging Entity	tagging

Critical Slices

Personal	Queries Sensitive	Topics

(Data subsets)
Related Task

Query	Parsing	2



Hidden	technical	debt	of	ML



Hidden	Tech



Hidden	technical	debt.



Code	is	nasty

• In	conventional	code,		the	
person	who	wrote	it	usually	
knows	why	it	works—but	
maybe	no	one	else!

• In	ML	code,	no	one	may	
know!



Hidden	Benefit	of	
Neural	Nets

• Representation	and	normalization	code	is	nasty.	
I’ve	yet	to	see	someone	proud	of	 it.
• In	a	NN,	you	relearn	it,	and	so	don’t	have	to	
maintain	it.

• ML	is	eating	software!

• This	is	called	Software	2.0
• Andrej	Karpathy
• Disclosure:	We	also	work	on	this	a	lot!



Reproducibility

Great	talk!	Highly	recommend	 it	
(Keynote	 last	year—Kunle	was	great	too!)



Reproducibility

• Your	goal	is	to	avoid	fooling	yourself.
• It	will	be	hard!	You’re	clever!

• Meaningless	change	causes	a	quality	change:	
Random	seeds	shouldn’t	matter,	but	they	lead	to	
different	outcomes!

• We	separate	train	and	test	in	an	effort	to	not	be	
wrong.

• No	silver	bullet,	diligence	everywhere.



Summary



Summary

• Measure	twice,	cut	once.	Don’t	bash,	try	to	setup	diagnostics.
• Ideally	in	code!	You	want	to	reuse	these!
• Canada	has	been	ahead	on	aspects	of	learning

• Look	at	your	data	and	your	predictions.	No	substitute.

• ML	systems	are	used	to	make	it	easier	to	write	code,	it’s	a	high-
interest	credit	card	of	technical	debt.


